一种自组织粒子群优化算法及其应用

Yuanxia Shen, Chuanhua Zeng
{"title":"一种自组织粒子群优化算法及其应用","authors":"Yuanxia Shen, Chuanhua Zeng","doi":"10.1109/ICNC.2007.137","DOIUrl":null,"url":null,"abstract":"A self-organizing particle swarm optimization algorithm is developed for solving premature convergence of particle swarm optimization. According to adaptively adjusting acceleration coefficients and inertia weight, the particles are organized to track the domain of attraction of local optimum and the domain of attraction global optimum respectively during the search. Meanwhile the corresponding strategies with mutation are adopted in different stages of this algorithm to further enhance diversity of population. Experimental results for complex function optimization and nonlinear system identification show that this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Self-Organizing Particle Swarm Optimization Algorithm and Application\",\"authors\":\"Yuanxia Shen, Chuanhua Zeng\",\"doi\":\"10.1109/ICNC.2007.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A self-organizing particle swarm optimization algorithm is developed for solving premature convergence of particle swarm optimization. According to adaptively adjusting acceleration coefficients and inertia weight, the particles are organized to track the domain of attraction of local optimum and the domain of attraction global optimum respectively during the search. Meanwhile the corresponding strategies with mutation are adopted in different stages of this algorithm to further enhance diversity of population. Experimental results for complex function optimization and nonlinear system identification show that this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对粒子群优化算法的早熟收敛问题,提出了一种自组织粒子群优化算法。根据自适应调整的加速度系数和惯性权重,组织粒子在搜索过程中分别跟踪局部最优的引力域和全局最优的引力域。同时在算法的不同阶段采用相应的变异策略,进一步增强种群的多样性。复杂函数优化和非线性系统辨识的实验结果表明,该算法提高了全局收敛能力,有效地防止了算法的局部优化和早熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Self-Organizing Particle Swarm Optimization Algorithm and Application
A self-organizing particle swarm optimization algorithm is developed for solving premature convergence of particle swarm optimization. According to adaptively adjusting acceleration coefficients and inertia weight, the particles are organized to track the domain of attraction of local optimum and the domain of attraction global optimum respectively during the search. Meanwhile the corresponding strategies with mutation are adopted in different stages of this algorithm to further enhance diversity of population. Experimental results for complex function optimization and nonlinear system identification show that this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信