基于策略的安全车辆内部通信框架

Mohammad Hamad, Marcus Nolte, V. Prevelakis
{"title":"基于策略的安全车辆内部通信框架","authors":"Mohammad Hamad, Marcus Nolte, V. Prevelakis","doi":"10.1109/VNC.2017.8275646","DOIUrl":null,"url":null,"abstract":"Over the past two decades, significant developments were introduced within the vehicular domain, evolving the modern vehicle into a network of dozens of embedded systems each hosting one or more applications. Communications within this distributed environment while adhering to safety-critical and secure systems guidelines implies the formulation of a comprehensive and consistent communications policy. Creating this policy is a complex, error-prone and labor-intensive task, requiring detailed knowledge of possible communication paths between all possible components of the system. For this reason, it is often skipped, trusting that each task will behave as intended and interact only with its peers. Traditional testing provides sufficient confidence to allow certification. Nevertheless, the existing process ignores malicious interference, whereby an adversary compromises a low-criticality process or subsystem and uses that to attack other subsystems, effectively taking over the vehicle. In this paper, we propose a framework to build a secure communications policy gradually by integrating it through the design and life cycle of vehicle's software components. We also propose a security module which acts as a connection policy checker vetting the incoming and outgoing communications and enforcing the distributed security policy.","PeriodicalId":101592,"journal":{"name":"2017 IEEE Vehicular Networking Conference (VNC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A framework for policy based secure intra vehicle communication\",\"authors\":\"Mohammad Hamad, Marcus Nolte, V. Prevelakis\",\"doi\":\"10.1109/VNC.2017.8275646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past two decades, significant developments were introduced within the vehicular domain, evolving the modern vehicle into a network of dozens of embedded systems each hosting one or more applications. Communications within this distributed environment while adhering to safety-critical and secure systems guidelines implies the formulation of a comprehensive and consistent communications policy. Creating this policy is a complex, error-prone and labor-intensive task, requiring detailed knowledge of possible communication paths between all possible components of the system. For this reason, it is often skipped, trusting that each task will behave as intended and interact only with its peers. Traditional testing provides sufficient confidence to allow certification. Nevertheless, the existing process ignores malicious interference, whereby an adversary compromises a low-criticality process or subsystem and uses that to attack other subsystems, effectively taking over the vehicle. In this paper, we propose a framework to build a secure communications policy gradually by integrating it through the design and life cycle of vehicle's software components. We also propose a security module which acts as a connection policy checker vetting the incoming and outgoing communications and enforcing the distributed security policy.\",\"PeriodicalId\":101592,\"journal\":{\"name\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNC.2017.8275646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2017.8275646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在过去的二十年中,车辆领域取得了重大进展,现代车辆发展成为由数十个嵌入式系统组成的网络,每个嵌入式系统托管一个或多个应用程序。在这个分布式环境中,在遵守安全关键和安全系统指导方针的情况下进行通信,意味着需要制定全面和一致的通信策略。创建此策略是一项复杂的、容易出错的劳动密集型任务,需要详细了解系统所有可能组件之间可能的通信路径。由于这个原因,它经常被跳过,相信每个任务都将按照预期的方式运行,并且只与它的同伴交互。传统的测试为认证提供了足够的信心。然而,现有的过程忽略了恶意干扰,即攻击者破坏低临界过程或子系统,并使用它来攻击其他子系统,从而有效地接管车辆。在本文中,我们提出了一个框架,通过将其集成到车辆软件组件的设计和生命周期中,逐步构建安全通信策略。我们还提出了一个安全模块,作为连接策略检查器,检查传入和传出通信并执行分布式安全策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for policy based secure intra vehicle communication
Over the past two decades, significant developments were introduced within the vehicular domain, evolving the modern vehicle into a network of dozens of embedded systems each hosting one or more applications. Communications within this distributed environment while adhering to safety-critical and secure systems guidelines implies the formulation of a comprehensive and consistent communications policy. Creating this policy is a complex, error-prone and labor-intensive task, requiring detailed knowledge of possible communication paths between all possible components of the system. For this reason, it is often skipped, trusting that each task will behave as intended and interact only with its peers. Traditional testing provides sufficient confidence to allow certification. Nevertheless, the existing process ignores malicious interference, whereby an adversary compromises a low-criticality process or subsystem and uses that to attack other subsystems, effectively taking over the vehicle. In this paper, we propose a framework to build a secure communications policy gradually by integrating it through the design and life cycle of vehicle's software components. We also propose a security module which acts as a connection policy checker vetting the incoming and outgoing communications and enforcing the distributed security policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信