野外多靶点影响检测:一项探索性研究

P. Schmidt, R. Dürichen, Attila Reiss, Kristof Van Laerhoven, T. Plötz
{"title":"野外多靶点影响检测:一项探索性研究","authors":"P. Schmidt, R. Dürichen, Attila Reiss, Kristof Van Laerhoven, T. Plötz","doi":"10.1145/3341163.3347741","DOIUrl":null,"url":null,"abstract":"Affective computing aims to detect a person's affective state (e.g. emotion) based on observables. The link between affective states and biophysical data, collected in lab settings, has been established successfully. However, the number of realistic studies targeting affect detection in the wild is still limited. In this paper we present an exploratory field study, using physiological data of 11 healthy subjects. We aim to classify arousal, State-Trait Anxiety Inventory (STAI), stress, and valence self-reports, utilizing feature-based and convolutional neural network (CNN) methods. In addition, we extend the CNNs to multi-task CNNs, classifying all labels of interest simultaneously. Comparing the F1 score averaged over the different tasks and classifiers the CNNs reach an 1.8% higher score than the classical methods. However, the F1 scores barely exceed 45%. In the light of these results, we discuss pitfalls and challenges for physiology-based affective computing in the wild.","PeriodicalId":112916,"journal":{"name":"Proceedings of the 2019 ACM International Symposium on Wearable Computers","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Multi-target affect detection in the wild: an exploratory study\",\"authors\":\"P. Schmidt, R. Dürichen, Attila Reiss, Kristof Van Laerhoven, T. Plötz\",\"doi\":\"10.1145/3341163.3347741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affective computing aims to detect a person's affective state (e.g. emotion) based on observables. The link between affective states and biophysical data, collected in lab settings, has been established successfully. However, the number of realistic studies targeting affect detection in the wild is still limited. In this paper we present an exploratory field study, using physiological data of 11 healthy subjects. We aim to classify arousal, State-Trait Anxiety Inventory (STAI), stress, and valence self-reports, utilizing feature-based and convolutional neural network (CNN) methods. In addition, we extend the CNNs to multi-task CNNs, classifying all labels of interest simultaneously. Comparing the F1 score averaged over the different tasks and classifiers the CNNs reach an 1.8% higher score than the classical methods. However, the F1 scores barely exceed 45%. In the light of these results, we discuss pitfalls and challenges for physiology-based affective computing in the wild.\",\"PeriodicalId\":112916,\"journal\":{\"name\":\"Proceedings of the 2019 ACM International Symposium on Wearable Computers\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341163.3347741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341163.3347741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

情感计算的目的是检测一个人的情感状态(如情绪)基于可观察到的。在实验室环境中收集的情感状态和生物物理数据之间的联系已经成功建立。然而,针对野外影响检测的现实研究数量仍然有限。在本文中,我们提出了一项探索性的实地研究,使用11名健康受试者的生理数据。我们的目标是分类唤醒,状态-特质焦虑量表(STAI),压力和效价自我报告,利用特征和卷积神经网络(CNN)方法。此外,我们将cnn扩展到多任务cnn,同时对所有感兴趣的标签进行分类。比较不同任务和分类器的F1平均得分,cnn的得分比经典方法高1.8%。然而,F1的分数勉强超过45%。根据这些结果,我们讨论了野外基于生理的情感计算的陷阱和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-target affect detection in the wild: an exploratory study
Affective computing aims to detect a person's affective state (e.g. emotion) based on observables. The link between affective states and biophysical data, collected in lab settings, has been established successfully. However, the number of realistic studies targeting affect detection in the wild is still limited. In this paper we present an exploratory field study, using physiological data of 11 healthy subjects. We aim to classify arousal, State-Trait Anxiety Inventory (STAI), stress, and valence self-reports, utilizing feature-based and convolutional neural network (CNN) methods. In addition, we extend the CNNs to multi-task CNNs, classifying all labels of interest simultaneously. Comparing the F1 score averaged over the different tasks and classifiers the CNNs reach an 1.8% higher score than the classical methods. However, the F1 scores barely exceed 45%. In the light of these results, we discuss pitfalls and challenges for physiology-based affective computing in the wild.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信