可相互作用玻色子模型的广义准自旋子形式和费米子基

K. Baktybayev, A. Dalelkhankyzy, N. Koilyk, M. K. Baktybayev
{"title":"可相互作用玻色子模型的广义准自旋子形式和费米子基","authors":"K. Baktybayev, A. Dalelkhankyzy, N. Koilyk, M. K. Baktybayev","doi":"10.12988/astp.2019.9521","DOIUrl":null,"url":null,"abstract":"A relatively simple, detailed microscopic calculation of IBM parameters based on the generalized quasi-spin formalism is proposed, by including in the theory of the double tensor, acting in the spaces, both angular moments and generalized quasispins. The method is applied to the study of the structure of the collective state of even isotopes Xe 130 118 . The spectrum and probabilities of electromagnetic transitions of nuclei are calculated and they are compared with the available experimental data.","PeriodicalId":127314,"journal":{"name":"Advanced Studies in Theoretical Physics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized quasispin formalism and fermion bases of the model of interactable bosons\",\"authors\":\"K. Baktybayev, A. Dalelkhankyzy, N. Koilyk, M. K. Baktybayev\",\"doi\":\"10.12988/astp.2019.9521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A relatively simple, detailed microscopic calculation of IBM parameters based on the generalized quasi-spin formalism is proposed, by including in the theory of the double tensor, acting in the spaces, both angular moments and generalized quasispins. The method is applied to the study of the structure of the collective state of even isotopes Xe 130 118 . The spectrum and probabilities of electromagnetic transitions of nuclei are calculated and they are compared with the available experimental data.\",\"PeriodicalId\":127314,\"journal\":{\"name\":\"Advanced Studies in Theoretical Physics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Studies in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/astp.2019.9521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/astp.2019.9521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过在双张量理论中包含角矩和广义准旋,提出了一种相对简单、详细的基于广义准自旋形式的IBM参数微观计算方法。该方法应用于均匀同位素Xe 130 118‐的集体态结构的研究。计算了原子核电磁跃迁的谱和概率,并与已有的实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized quasispin formalism and fermion bases of the model of interactable bosons
A relatively simple, detailed microscopic calculation of IBM parameters based on the generalized quasi-spin formalism is proposed, by including in the theory of the double tensor, acting in the spaces, both angular moments and generalized quasispins. The method is applied to the study of the structure of the collective state of even isotopes Xe 130 118 . The spectrum and probabilities of electromagnetic transitions of nuclei are calculated and they are compared with the available experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信