{"title":"一种证明同伦连续路径的方法:单变量情况","authors":"Juan Xu, M. Burr, C. Yap","doi":"10.1145/3208976.3209010","DOIUrl":null,"url":null,"abstract":"Homotopy continuation is a well-known method in numerical root-finding. Recently, certified algorithms for homotopy continuation based on Smale's alpha-theory have been developed. This approach enforces very strong requirements at each step, leading to small step sizes. In this paper, we propose an approach that is independent of alpha-theory. It is based on the weaker notion of well-isolated approximations to the roots. We apply it to univariate polynomials and provide experimental evidence of its feasibility.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Approach for Certifying Homotopy Continuation Paths: Univariate Case\",\"authors\":\"Juan Xu, M. Burr, C. Yap\",\"doi\":\"10.1145/3208976.3209010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homotopy continuation is a well-known method in numerical root-finding. Recently, certified algorithms for homotopy continuation based on Smale's alpha-theory have been developed. This approach enforces very strong requirements at each step, leading to small step sizes. In this paper, we propose an approach that is independent of alpha-theory. It is based on the weaker notion of well-isolated approximations to the roots. We apply it to univariate polynomials and provide experimental evidence of its feasibility.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach for Certifying Homotopy Continuation Paths: Univariate Case
Homotopy continuation is a well-known method in numerical root-finding. Recently, certified algorithms for homotopy continuation based on Smale's alpha-theory have been developed. This approach enforces very strong requirements at each step, leading to small step sizes. In this paper, we propose an approach that is independent of alpha-theory. It is based on the weaker notion of well-isolated approximations to the roots. We apply it to univariate polynomials and provide experimental evidence of its feasibility.