基于摄像头传感器和嵌入式系统的增强自适应交通信号控制系统

F. A. Afif, M. F. Rachmadi, A. Wibowo, W. Jatmiko, P. Mursanto, M. A. Ma'sum
{"title":"基于摄像头传感器和嵌入式系统的增强自适应交通信号控制系统","authors":"F. A. Afif, M. F. Rachmadi, A. Wibowo, W. Jatmiko, P. Mursanto, M. A. Ma'sum","doi":"10.1109/MHS.2011.6102210","DOIUrl":null,"url":null,"abstract":"Traffic plays an important role in social stability and community development. Without an appropriate traffic signal control system, the possibility of traffic congestion will be very high and causes various negative impacts. The traffic signal control system with video camera sensor is implemented in embedded systems using BeagleBoard-xM. The system uses Viola-Jones method and Haar Training in detecting the vehicle object from a video frame. Then, Euclidean distance and kalman filter methods are used in tracking the vehicle. The ability of kalman filter in predicting the next position of the object is a very important feature for multi-object tracking. The number of counted vehicles in each lane at the intersection then will be processed using Fuzzy Logic to determine optimal cycle time and split time.","PeriodicalId":286457,"journal":{"name":"2011 International Symposium on Micro-NanoMechatronics and Human Science","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Enhanced adaptive traffic signal control system using camera sensor and embedded system\",\"authors\":\"F. A. Afif, M. F. Rachmadi, A. Wibowo, W. Jatmiko, P. Mursanto, M. A. Ma'sum\",\"doi\":\"10.1109/MHS.2011.6102210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic plays an important role in social stability and community development. Without an appropriate traffic signal control system, the possibility of traffic congestion will be very high and causes various negative impacts. The traffic signal control system with video camera sensor is implemented in embedded systems using BeagleBoard-xM. The system uses Viola-Jones method and Haar Training in detecting the vehicle object from a video frame. Then, Euclidean distance and kalman filter methods are used in tracking the vehicle. The ability of kalman filter in predicting the next position of the object is a very important feature for multi-object tracking. The number of counted vehicles in each lane at the intersection then will be processed using Fuzzy Logic to determine optimal cycle time and split time.\",\"PeriodicalId\":286457,\"journal\":{\"name\":\"2011 International Symposium on Micro-NanoMechatronics and Human Science\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Micro-NanoMechatronics and Human Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2011.6102210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2011.6102210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

交通在社会稳定和社区发展中发挥着重要作用。如果没有一个合适的交通信号控制系统,交通拥堵的可能性将非常高,并造成各种负面影响。采用BeagleBoard-xM在嵌入式系统中实现了带有视频摄像头传感器的交通信号控制系统。该系统使用维奥拉-琼斯方法和哈尔训练从视频帧中检测车辆目标。然后,利用欧氏距离和卡尔曼滤波方法对车辆进行跟踪。卡尔曼滤波预测目标下一个位置的能力是多目标跟踪的一个重要特征。然后用模糊逻辑对交叉口每条车道上的车辆数量进行处理,确定最优循环时间和分段时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced adaptive traffic signal control system using camera sensor and embedded system
Traffic plays an important role in social stability and community development. Without an appropriate traffic signal control system, the possibility of traffic congestion will be very high and causes various negative impacts. The traffic signal control system with video camera sensor is implemented in embedded systems using BeagleBoard-xM. The system uses Viola-Jones method and Haar Training in detecting the vehicle object from a video frame. Then, Euclidean distance and kalman filter methods are used in tracking the vehicle. The ability of kalman filter in predicting the next position of the object is a very important feature for multi-object tracking. The number of counted vehicles in each lane at the intersection then will be processed using Fuzzy Logic to determine optimal cycle time and split time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信