奇异积分方程和非齐次抛物型偏微分方程的直接方法

A. Aghili
{"title":"奇异积分方程和非齐次抛物型偏微分方程的直接方法","authors":"A. Aghili","doi":"10.33993/jnaat512-1269","DOIUrl":null,"url":null,"abstract":"In this article, the author presented some applications of the Laplace, \\(L^2\\), and Post-Widder transforms for solving fractional Singular Integral Equations, impulsive differential equation and systems of differential equations. Finally, analytic solution for a non-homogeneous partial differential equation with non-constant coefficients is given. The obtained results reveal that the integral transform method is an effective tool and convenient.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct methods for singular integral equations and non-homogeneous parabolic PDEs\",\"authors\":\"A. Aghili\",\"doi\":\"10.33993/jnaat512-1269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the author presented some applications of the Laplace, \\\\(L^2\\\\), and Post-Widder transforms for solving fractional Singular Integral Equations, impulsive differential equation and systems of differential equations. Finally, analytic solution for a non-homogeneous partial differential equation with non-constant coefficients is given. The obtained results reveal that the integral transform method is an effective tool and convenient.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat512-1269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat512-1269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了拉普拉斯变换、\(L^2\)变换和后widder变换在求解分数阶奇异积分方程、脉冲微分方程和微分方程组中的一些应用。最后给出了一类非常系数非齐次偏微分方程的解析解。结果表明,积分变换法是一种有效的求解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct methods for singular integral equations and non-homogeneous parabolic PDEs
In this article, the author presented some applications of the Laplace, \(L^2\), and Post-Widder transforms for solving fractional Singular Integral Equations, impulsive differential equation and systems of differential equations. Finally, analytic solution for a non-homogeneous partial differential equation with non-constant coefficients is given. The obtained results reveal that the integral transform method is an effective tool and convenient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信