记忆GMM处理运动目标分割中的急剧变化

Yanjiang Wang, Peng Suo, Yujuan Qi
{"title":"记忆GMM处理运动目标分割中的急剧变化","authors":"Yanjiang Wang, Peng Suo, Yujuan Qi","doi":"10.1109/CISP.2009.5303426","DOIUrl":null,"url":null,"abstract":"Gaussian Mixture Model (GMM) is one of the best models for modeling a background scene with gradual changes and repetitive motions. However, it fails in segmenting moving objects when the scene changes sharply. To handle this problem, a novel background modeling algorithm — Memorizing GMM is proposed, which is inspired by the way human perceive the environment. It can make the GMM remember what the scene has ever been during the learning and updating period. Experimental results show that it can help segmenting moving objects precisely when the scene changes sharply. Keywords-GMM; moving objects segmentation; sharp changes; background model; Memorizing GMM","PeriodicalId":263281,"journal":{"name":"2009 2nd International Congress on Image and Signal Processing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memorizing GMM to Handle Sharp Changes in Moving Object Segmentation\",\"authors\":\"Yanjiang Wang, Peng Suo, Yujuan Qi\",\"doi\":\"10.1109/CISP.2009.5303426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian Mixture Model (GMM) is one of the best models for modeling a background scene with gradual changes and repetitive motions. However, it fails in segmenting moving objects when the scene changes sharply. To handle this problem, a novel background modeling algorithm — Memorizing GMM is proposed, which is inspired by the way human perceive the environment. It can make the GMM remember what the scene has ever been during the learning and updating period. Experimental results show that it can help segmenting moving objects precisely when the scene changes sharply. Keywords-GMM; moving objects segmentation; sharp changes; background model; Memorizing GMM\",\"PeriodicalId\":263281,\"journal\":{\"name\":\"2009 2nd International Congress on Image and Signal Processing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Congress on Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2009.5303426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2009.5303426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯混合模型(Gaussian Mixture Model, GMM)是模拟具有渐变和重复运动的背景场景的最佳模型之一。然而,当场景发生剧烈变化时,它无法分割出运动物体。为了解决这一问题,受人类感知环境方式的启发,提出了一种新的背景建模算法——记忆GMM。它可以使GMM在学习和更新期间记住曾经发生过的场景。实验结果表明,该方法可以在场景剧烈变化时对运动物体进行精确分割。Keywords-GMM;运动目标分割;急剧变化;背景模型;记忆GMM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memorizing GMM to Handle Sharp Changes in Moving Object Segmentation
Gaussian Mixture Model (GMM) is one of the best models for modeling a background scene with gradual changes and repetitive motions. However, it fails in segmenting moving objects when the scene changes sharply. To handle this problem, a novel background modeling algorithm — Memorizing GMM is proposed, which is inspired by the way human perceive the environment. It can make the GMM remember what the scene has ever been during the learning and updating period. Experimental results show that it can help segmenting moving objects precisely when the scene changes sharply. Keywords-GMM; moving objects segmentation; sharp changes; background model; Memorizing GMM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信