通过蓝牙信号推断社会行为

Zhenyu Chen, Yiqiang Chen, Shuangquan Wang, Junfa Liu, Xingyu Gao, A. Campbell
{"title":"通过蓝牙信号推断社会行为","authors":"Zhenyu Chen, Yiqiang Chen, Shuangquan Wang, Junfa Liu, Xingyu Gao, A. Campbell","doi":"10.1145/2494091.2494176","DOIUrl":null,"url":null,"abstract":"Context-aware computing is increasingly paid much attention, especially makes the people's social contextual behavior very crucial for user-centric dynamic behavior inference. At present, extensive work has focused on detecting specific places inferred by static radio signals like GPS, GSM and WiFi, and recognizing mobility modes inferred by embedded sensor components like accelerometer. This paper proposes a distinct feature based classification approach and context restraint based majority vote rule to infer social contextual behavior in dynamic surroundings. Experimental results indicate that our proposed method can achieve high accuracy for inferring social contextual behavior through the real-life Bluetooth traces.","PeriodicalId":220524,"journal":{"name":"Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication","volume":"21 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Inferring social contextual behavior from bluetooth traces\",\"authors\":\"Zhenyu Chen, Yiqiang Chen, Shuangquan Wang, Junfa Liu, Xingyu Gao, A. Campbell\",\"doi\":\"10.1145/2494091.2494176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context-aware computing is increasingly paid much attention, especially makes the people's social contextual behavior very crucial for user-centric dynamic behavior inference. At present, extensive work has focused on detecting specific places inferred by static radio signals like GPS, GSM and WiFi, and recognizing mobility modes inferred by embedded sensor components like accelerometer. This paper proposes a distinct feature based classification approach and context restraint based majority vote rule to infer social contextual behavior in dynamic surroundings. Experimental results indicate that our proposed method can achieve high accuracy for inferring social contextual behavior through the real-life Bluetooth traces.\",\"PeriodicalId\":220524,\"journal\":{\"name\":\"Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication\",\"volume\":\"21 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2494091.2494176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2494091.2494176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

上下文感知计算越来越受到人们的关注,特别是人们的社会上下文行为对于以用户为中心的动态行为推理至关重要。目前,大量的工作集中在通过静态无线电信号(如GPS、GSM和WiFi)推断的特定地点检测,以及通过嵌入式传感器组件(如加速度计)推断的移动模式识别。本文提出了一种基于鲜明特征的分类方法和基于语境约束的多数投票规则,用于动态环境下的社会语境行为推断。实验结果表明,我们提出的方法可以通过现实生活中的蓝牙痕迹来推断社会情境行为,达到较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring social contextual behavior from bluetooth traces
Context-aware computing is increasingly paid much attention, especially makes the people's social contextual behavior very crucial for user-centric dynamic behavior inference. At present, extensive work has focused on detecting specific places inferred by static radio signals like GPS, GSM and WiFi, and recognizing mobility modes inferred by embedded sensor components like accelerometer. This paper proposes a distinct feature based classification approach and context restraint based majority vote rule to infer social contextual behavior in dynamic surroundings. Experimental results indicate that our proposed method can achieve high accuracy for inferring social contextual behavior through the real-life Bluetooth traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信