基于反卷积卡尔曼滤波的有色植物噪声估计

M.-H. Yoon, T. Ramabadran
{"title":"基于反卷积卡尔曼滤波的有色植物噪声估计","authors":"M.-H. Yoon, T. Ramabadran","doi":"10.1109/ICSYSE.1991.161164","DOIUrl":null,"url":null,"abstract":"In many deconvolution problems, the signal to be estimated is modeled as the input to a known plant and assumed white. There are, however, situations in which this signal is not white. A simple iterative scheme for estimating colored sequences is presented. In this scheme, the colored plant noise is modeled as the output of a shaping filter excited by white noise. The shaping filter is considered as part of the plant while applying Mendel's minimum variance deconvolution (MVD) algorithm based on the Kalman filter to estimate the plant noise. To begin with, the shaping filter is just an identity filter. The estimated plant noise is then used to update its coefficients iteratively until the change in the coefficient values is small. The iterative scheme has been tested using simulated data under different conditions, and is found to perform quite well under certain situations.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of colored plant noise using Kalman filter based deconvolution\",\"authors\":\"M.-H. Yoon, T. Ramabadran\",\"doi\":\"10.1109/ICSYSE.1991.161164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many deconvolution problems, the signal to be estimated is modeled as the input to a known plant and assumed white. There are, however, situations in which this signal is not white. A simple iterative scheme for estimating colored sequences is presented. In this scheme, the colored plant noise is modeled as the output of a shaping filter excited by white noise. The shaping filter is considered as part of the plant while applying Mendel's minimum variance deconvolution (MVD) algorithm based on the Kalman filter to estimate the plant noise. To begin with, the shaping filter is just an identity filter. The estimated plant noise is then used to update its coefficients iteratively until the change in the coefficient values is small. The iterative scheme has been tested using simulated data under different conditions, and is found to perform quite well under certain situations.<<ETX>>\",\"PeriodicalId\":250037,\"journal\":{\"name\":\"IEEE 1991 International Conference on Systems Engineering\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1991 International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1991.161164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在许多反卷积问题中,要估计的信号被建模为已知植物的输入,并假定为白色。然而,在某些情况下,这个信号不是白色的。提出了一种估计彩色序列的简单迭代算法。在该方案中,彩色植物噪声被建模为由白噪声激励的整形滤波器的输出。将整形滤波器视为植物的一部分,采用基于卡尔曼滤波的孟德尔最小方差反卷积算法估计植物噪声。首先,整形滤波器只是一个身份滤波器。然后使用估计的植物噪声迭代更新其系数,直到系数值的变化很小。用不同条件下的模拟数据对该迭代方案进行了测试,并发现在某些情况下执行得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of colored plant noise using Kalman filter based deconvolution
In many deconvolution problems, the signal to be estimated is modeled as the input to a known plant and assumed white. There are, however, situations in which this signal is not white. A simple iterative scheme for estimating colored sequences is presented. In this scheme, the colored plant noise is modeled as the output of a shaping filter excited by white noise. The shaping filter is considered as part of the plant while applying Mendel's minimum variance deconvolution (MVD) algorithm based on the Kalman filter to estimate the plant noise. To begin with, the shaping filter is just an identity filter. The estimated plant noise is then used to update its coefficients iteratively until the change in the coefficient values is small. The iterative scheme has been tested using simulated data under different conditions, and is found to perform quite well under certain situations.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信