基于MSRCR的快递包裹条形码快速分割识别增强了高噪声环境

Liu Weihao, Chen Jiamin, Wang Ning, Shen Jun, Li Weijiao, Ji Linhua, Chen Xiaodong
{"title":"基于MSRCR的快递包裹条形码快速分割识别增强了高噪声环境","authors":"Liu Weihao, Chen Jiamin, Wang Ning, Shen Jun, Li Weijiao, Ji Linhua, Chen Xiaodong","doi":"10.1109/IICSPI48186.2019.9095974","DOIUrl":null,"url":null,"abstract":"With the rapid development of the domestic logistics industry, the demand for quick inquiry of express parcel delivery information is becoming more and more urgent. The automatic acquisition of express delivery number is expected to solve this problem. This paper proposes a barcode localization segmentation recognition algorithm for bar code/QR code location segmentation recognition in a single scan image of a parcel in a complex environment. The whole algorithm is fully tested in the actual express single scan image. The results show that the algorithm is fast, accurate and has low bit error rate, and has strong practical value.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast segmentation identification of express parcel barcode based on MSRCR enhanced high noise environment\",\"authors\":\"Liu Weihao, Chen Jiamin, Wang Ning, Shen Jun, Li Weijiao, Ji Linhua, Chen Xiaodong\",\"doi\":\"10.1109/IICSPI48186.2019.9095974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of the domestic logistics industry, the demand for quick inquiry of express parcel delivery information is becoming more and more urgent. The automatic acquisition of express delivery number is expected to solve this problem. This paper proposes a barcode localization segmentation recognition algorithm for bar code/QR code location segmentation recognition in a single scan image of a parcel in a complex environment. The whole algorithm is fully tested in the actual express single scan image. The results show that the algorithm is fast, accurate and has low bit error rate, and has strong practical value.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9095974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着国内物流业的快速发展,快速查询快递包裹投递信息的需求越来越迫切。快递号的自动获取有望解决这一问题。本文提出了一种条形码定位分割识别算法,用于复杂环境下单个包裹扫描图像的条形码/二维码定位分割识别。整个算法在实际的快递单次扫描图像中进行了充分的测试。结果表明,该算法快速、准确、误码率低,具有较强的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast segmentation identification of express parcel barcode based on MSRCR enhanced high noise environment
With the rapid development of the domestic logistics industry, the demand for quick inquiry of express parcel delivery information is becoming more and more urgent. The automatic acquisition of express delivery number is expected to solve this problem. This paper proposes a barcode localization segmentation recognition algorithm for bar code/QR code location segmentation recognition in a single scan image of a parcel in a complex environment. The whole algorithm is fully tested in the actual express single scan image. The results show that the algorithm is fast, accurate and has low bit error rate, and has strong practical value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信