极值分布(EVDs)噪声下混合自回归随机过程的Kullback-Leibler散度及其在气候变化中的应用

R. O. Olanrewaju, A. Waititu
{"title":"极值分布(EVDs)噪声下混合自回归随机过程的Kullback-Leibler散度及其在气候变化中的应用","authors":"R. O. Olanrewaju, A. Waititu","doi":"10.14738/tmlai.101.11544","DOIUrl":null,"url":null,"abstract":"This paper designs inter-switch autoregressive random processes in a mixture manner with Extreme-Value-Distributions (EVDs) random noises to give EVDs-MAR model. The EVDs-MAR model comprises of Fréchet, Gumbel, and Weibull distributional error terms to form FMA, GMA, and WMA models with their embedded inter-switching transitional weights (wk) , distributional parameters, and autoregressive coefficients . The Kullback-Leibler divergence was used to measure the proximity (D) between finite/ delimited mixture density  and infinite mixture density of the EVDs-MAR model with Expectation-Maximization (EM) algorithm adopted as the parameter estimation technique for the extreme mixture model. The FMA, GMA, and WMA models were subjected to monthly temperature in Celsius (oC) from 1900 to 2020 and annual rainfall in Millimeter (mm) from 1960 to 2020 datasets in Nigeria context.","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kullback-Leibler Divergence of Mixture Autoregressive Random Processes via Extreme-Value-Distributions (EVDs) Noise with Application of the Processes to Climate Change\",\"authors\":\"R. O. Olanrewaju, A. Waititu\",\"doi\":\"10.14738/tmlai.101.11544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper designs inter-switch autoregressive random processes in a mixture manner with Extreme-Value-Distributions (EVDs) random noises to give EVDs-MAR model. The EVDs-MAR model comprises of Fréchet, Gumbel, and Weibull distributional error terms to form FMA, GMA, and WMA models with their embedded inter-switching transitional weights (wk) , distributional parameters, and autoregressive coefficients . The Kullback-Leibler divergence was used to measure the proximity (D) between finite/ delimited mixture density  and infinite mixture density of the EVDs-MAR model with Expectation-Maximization (EM) algorithm adopted as the parameter estimation technique for the extreme mixture model. The FMA, GMA, and WMA models were subjected to monthly temperature in Celsius (oC) from 1900 to 2020 and annual rainfall in Millimeter (mm) from 1960 to 2020 datasets in Nigeria context.\",\"PeriodicalId\":119801,\"journal\":{\"name\":\"Transactions on Machine Learning and Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Machine Learning and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/tmlai.101.11544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.101.11544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了带有极值分布(EVDs)随机噪声的混合开关自回归随机过程,给出了EVDs- mar模型。EVDs-MAR模型由fracimchet、Gumbel和Weibull分布误差项组成FMA、GMA和WMA模型,其中嵌入了相互切换的过渡权(wk)、分布参数和自回归系数。利用Kullback-Leibler散度度量EVDs-MAR模型的有限/定界混合密度与无限混合密度之间的接近度(D),并采用Expectation-Maximization (EM)算法作为极端混合模型的参数估计技术。FMA、GMA和WMA模型采用尼日利亚1900年至2020年的月气温(oC)和1960年至2020年的年降雨量(mm)数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kullback-Leibler Divergence of Mixture Autoregressive Random Processes via Extreme-Value-Distributions (EVDs) Noise with Application of the Processes to Climate Change
This paper designs inter-switch autoregressive random processes in a mixture manner with Extreme-Value-Distributions (EVDs) random noises to give EVDs-MAR model. The EVDs-MAR model comprises of Fréchet, Gumbel, and Weibull distributional error terms to form FMA, GMA, and WMA models with their embedded inter-switching transitional weights (wk) , distributional parameters, and autoregressive coefficients . The Kullback-Leibler divergence was used to measure the proximity (D) between finite/ delimited mixture density  and infinite mixture density of the EVDs-MAR model with Expectation-Maximization (EM) algorithm adopted as the parameter estimation technique for the extreme mixture model. The FMA, GMA, and WMA models were subjected to monthly temperature in Celsius (oC) from 1900 to 2020 and annual rainfall in Millimeter (mm) from 1960 to 2020 datasets in Nigeria context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信