金砖国家——平行估算法中心性的有效技术

Sai Charan Regunta, Sai Harsh Tondomker, Kishore Kothapalli
{"title":"金砖国家——平行估算法中心性的有效技术","authors":"Sai Charan Regunta, Sai Harsh Tondomker, Kishore Kothapalli","doi":"10.1109/IPDPSW.2019.00110","DOIUrl":null,"url":null,"abstract":"In this paper, we study scalable parallel algorithms for estimating the farness-centrality value of the nodes in a given undirected and connected graph. Our algorithms consider approaches that are more suitable for sparse graphs. To this end, we propose four optimization techniques based on removing redundant nodes, removing identical nodes, removing chain nodes, and making use of decomposition based on the biconnected components of the input graph. We test our techniques on a collection of real-world graphs for the time taken and the average error percentage. We further analyze the applicability of our techniques on various classes of real-world graphs. We suggest why certain techniques work better on certain classes of graphs.","PeriodicalId":292054,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BRICS – Efficient Techniques for Estimating the Farness-Centrality in Parallel\",\"authors\":\"Sai Charan Regunta, Sai Harsh Tondomker, Kishore Kothapalli\",\"doi\":\"10.1109/IPDPSW.2019.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study scalable parallel algorithms for estimating the farness-centrality value of the nodes in a given undirected and connected graph. Our algorithms consider approaches that are more suitable for sparse graphs. To this end, we propose four optimization techniques based on removing redundant nodes, removing identical nodes, removing chain nodes, and making use of decomposition based on the biconnected components of the input graph. We test our techniques on a collection of real-world graphs for the time taken and the average error percentage. We further analyze the applicability of our techniques on various classes of real-world graphs. We suggest why certain techniques work better on certain classes of graphs.\",\"PeriodicalId\":292054,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2019.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2019.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一种可扩展的并行算法,用于估计给定无向连通图中节点的中心性值。我们的算法考虑了更适合稀疏图的方法。为此,我们提出了基于去除冗余节点、去除相同节点、去除链节点和利用基于输入图双连通分量的分解的四种优化技术。我们在一组真实世界的图表上测试了我们的技术,以了解所花费的时间和平均错误率。我们进一步分析了我们的技术在各种真实世界图上的适用性。我们提出了为什么某些技术在某些类型的图上效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BRICS – Efficient Techniques for Estimating the Farness-Centrality in Parallel
In this paper, we study scalable parallel algorithms for estimating the farness-centrality value of the nodes in a given undirected and connected graph. Our algorithms consider approaches that are more suitable for sparse graphs. To this end, we propose four optimization techniques based on removing redundant nodes, removing identical nodes, removing chain nodes, and making use of decomposition based on the biconnected components of the input graph. We test our techniques on a collection of real-world graphs for the time taken and the average error percentage. We further analyze the applicability of our techniques on various classes of real-world graphs. We suggest why certain techniques work better on certain classes of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信