基于预训练特征高斯混合自编码器的异物碎片检测

Ying Jing, Hong Zheng, Wentao Zheng
{"title":"基于预训练特征高斯混合自编码器的异物碎片检测","authors":"Ying Jing, Hong Zheng, Wentao Zheng","doi":"10.1145/3565387.3565431","DOIUrl":null,"url":null,"abstract":"In this study, a novel anomaly localization method called Gaussian Mixture Autoencoder of Pre-trained Features (GMAPF) is proposed to perform foreign object debris (FOD) detection in the field of aviation. GMAPF utilizes the pre-trained deep convolutional neural network to establish multi-hierarchical feature representations, which are then fed into the deep autoencoder for dimensionality reduction and learning of low-dimensional embedding for each pixel of an image. The distribution of the normal pixel embedding is then modeled by Gaussian mixture model (GMM). Besides, instead of Expectation-Maximization (EM), GMAPF leverages a multi-layer perceptron to learn the parameters of GMM. Therefore, GMAPF could simultaneously optimize the parameters of the deep autoencoder and GMM in an end-to-end way. Many experiments are done on a newly collected dataset FOD, and the experimental results demonstrate the validity of GMAPF.","PeriodicalId":182491,"journal":{"name":"Proceedings of the 6th International Conference on Computer Science and Application Engineering","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foreign Object Debris Detection Based on Gaussian Mixture Autoencoder of Pre-trained Features\",\"authors\":\"Ying Jing, Hong Zheng, Wentao Zheng\",\"doi\":\"10.1145/3565387.3565431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel anomaly localization method called Gaussian Mixture Autoencoder of Pre-trained Features (GMAPF) is proposed to perform foreign object debris (FOD) detection in the field of aviation. GMAPF utilizes the pre-trained deep convolutional neural network to establish multi-hierarchical feature representations, which are then fed into the deep autoencoder for dimensionality reduction and learning of low-dimensional embedding for each pixel of an image. The distribution of the normal pixel embedding is then modeled by Gaussian mixture model (GMM). Besides, instead of Expectation-Maximization (EM), GMAPF leverages a multi-layer perceptron to learn the parameters of GMM. Therefore, GMAPF could simultaneously optimize the parameters of the deep autoencoder and GMM in an end-to-end way. Many experiments are done on a newly collected dataset FOD, and the experimental results demonstrate the validity of GMAPF.\",\"PeriodicalId\":182491,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Computer Science and Application Engineering\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Computer Science and Application Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3565387.3565431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3565387.3565431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的异常定位方法——预训练特征高斯混合自编码器(GMAPF),用于航空领域的异物碎片(FOD)检测。GMAPF利用预训练的深度卷积神经网络建立多层特征表示,然后将其输入深度自编码器进行降维并学习图像每个像素的低维嵌入。然后利用高斯混合模型(GMM)对正态像素嵌入的分布进行建模。此外,GMAPF利用多层感知器来学习GMM的参数,而不是期望最大化(EM)。因此,GMAPF可以端到端同时优化深度自编码器和GMM的参数。在新采集的数据集FOD上进行了大量实验,实验结果证明了GMAPF的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foreign Object Debris Detection Based on Gaussian Mixture Autoencoder of Pre-trained Features
In this study, a novel anomaly localization method called Gaussian Mixture Autoencoder of Pre-trained Features (GMAPF) is proposed to perform foreign object debris (FOD) detection in the field of aviation. GMAPF utilizes the pre-trained deep convolutional neural network to establish multi-hierarchical feature representations, which are then fed into the deep autoencoder for dimensionality reduction and learning of low-dimensional embedding for each pixel of an image. The distribution of the normal pixel embedding is then modeled by Gaussian mixture model (GMM). Besides, instead of Expectation-Maximization (EM), GMAPF leverages a multi-layer perceptron to learn the parameters of GMM. Therefore, GMAPF could simultaneously optimize the parameters of the deep autoencoder and GMM in an end-to-end way. Many experiments are done on a newly collected dataset FOD, and the experimental results demonstrate the validity of GMAPF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信