一种改进的TB-LSTM-CRF中文命名实体识别方法

Jiazheng Li, Tao Wang, Weiwen Zhang
{"title":"一种改进的TB-LSTM-CRF中文命名实体识别方法","authors":"Jiazheng Li, Tao Wang, Weiwen Zhang","doi":"10.1145/3421515.3421534","DOIUrl":null,"url":null,"abstract":"Owing to the lack of natural delimiters, Chinese named entity recognition (NER) is more challenging than it in English. While Chinese word segmentation (CWS) is generally regarded as key and open problem for Chinese NER, its accuracy is critical for the downstream models trainings and it also often suffers from out-of-vocabulary (OOV). In this paper, we propose an improved Chinese NER model called TB-LSTM-CRF, which introduces a Transformer Block on top of LSTM-CRF. The proposed model with Transformer Block exploits the self-attention mechanism to capture the information from adjacent characters and sentence contexts. It is more practical with using small-size character embeddings. Compared with the baseline using LSTM-CRF, experiment results show our method TB-LSTM-CRF is competitive without the need of any external resources, for instance other dictionaries.","PeriodicalId":294293,"journal":{"name":"2020 2nd Symposium on Signal Processing Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved Chinese Named Entity Recognition Method with TB-LSTM-CRF\",\"authors\":\"Jiazheng Li, Tao Wang, Weiwen Zhang\",\"doi\":\"10.1145/3421515.3421534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the lack of natural delimiters, Chinese named entity recognition (NER) is more challenging than it in English. While Chinese word segmentation (CWS) is generally regarded as key and open problem for Chinese NER, its accuracy is critical for the downstream models trainings and it also often suffers from out-of-vocabulary (OOV). In this paper, we propose an improved Chinese NER model called TB-LSTM-CRF, which introduces a Transformer Block on top of LSTM-CRF. The proposed model with Transformer Block exploits the self-attention mechanism to capture the information from adjacent characters and sentence contexts. It is more practical with using small-size character embeddings. Compared with the baseline using LSTM-CRF, experiment results show our method TB-LSTM-CRF is competitive without the need of any external resources, for instance other dictionaries.\",\"PeriodicalId\":294293,\"journal\":{\"name\":\"2020 2nd Symposium on Signal Processing Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Symposium on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3421515.3421534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Symposium on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3421515.3421534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于缺乏自然分隔符,中文命名实体识别比英文命名实体识别更具挑战性。摘要中文分词(CWS)一直被认为是中文NER的关键和开放性问题,其准确性对下游模型的训练至关重要,并且经常出现词汇外(OOV)的问题。在本文中,我们提出了一种改进的中国NER模型TB-LSTM-CRF,该模型在LSTM-CRF之上引入了一个变压器块。该模型利用自注意机制从相邻的字符和句子上下文中捕获信息。使用小尺寸字符嵌入更实用。实验结果表明,与LSTM-CRF方法相比,TB-LSTM-CRF方法在不需要任何外部资源(如其他字典)的情况下具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Chinese Named Entity Recognition Method with TB-LSTM-CRF
Owing to the lack of natural delimiters, Chinese named entity recognition (NER) is more challenging than it in English. While Chinese word segmentation (CWS) is generally regarded as key and open problem for Chinese NER, its accuracy is critical for the downstream models trainings and it also often suffers from out-of-vocabulary (OOV). In this paper, we propose an improved Chinese NER model called TB-LSTM-CRF, which introduces a Transformer Block on top of LSTM-CRF. The proposed model with Transformer Block exploits the self-attention mechanism to capture the information from adjacent characters and sentence contexts. It is more practical with using small-size character embeddings. Compared with the baseline using LSTM-CRF, experiment results show our method TB-LSTM-CRF is competitive without the need of any external resources, for instance other dictionaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信