{"title":"数据不平衡对多标签行人属性识别的影响","authors":"T. Wang, Kai-Chen Shu, Chia-Hao Chang, Yi-Fu Chen","doi":"10.1109/TAAI.2018.00025","DOIUrl":null,"url":null,"abstract":"Pedestrian attribute recognition has many applications in surveillance and attribute based query, tracking, and person re-identification. The recent trend in deep-learning based pedestrian attribute recognition is to use a shared CNN backbone for feature extraction and multiple subsequent branches for the individual branches. While this allows the end-to-end learning to simultaneously recognize multiple attributes, the data imbalance problem of most attributes becomes a challenge that has not been studied sufficiently for this application. This paper presents studies on how the cost adjustment method affects several common evaluation metrics. We also propose a two-stage training procedure, where an additional fine-tuning stage on the classifier layers only with class-balanced data is shown to improve recognition performances.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"72 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Effect of Data Imbalance for Multi-Label Pedestrian Attribute Recognition\",\"authors\":\"T. Wang, Kai-Chen Shu, Chia-Hao Chang, Yi-Fu Chen\",\"doi\":\"10.1109/TAAI.2018.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian attribute recognition has many applications in surveillance and attribute based query, tracking, and person re-identification. The recent trend in deep-learning based pedestrian attribute recognition is to use a shared CNN backbone for feature extraction and multiple subsequent branches for the individual branches. While this allows the end-to-end learning to simultaneously recognize multiple attributes, the data imbalance problem of most attributes becomes a challenge that has not been studied sufficiently for this application. This paper presents studies on how the cost adjustment method affects several common evaluation metrics. We also propose a two-stage training procedure, where an additional fine-tuning stage on the classifier layers only with class-balanced data is shown to improve recognition performances.\",\"PeriodicalId\":211734,\"journal\":{\"name\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"72 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2018.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Effect of Data Imbalance for Multi-Label Pedestrian Attribute Recognition
Pedestrian attribute recognition has many applications in surveillance and attribute based query, tracking, and person re-identification. The recent trend in deep-learning based pedestrian attribute recognition is to use a shared CNN backbone for feature extraction and multiple subsequent branches for the individual branches. While this allows the end-to-end learning to simultaneously recognize multiple attributes, the data imbalance problem of most attributes becomes a challenge that has not been studied sufficiently for this application. This paper presents studies on how the cost adjustment method affects several common evaluation metrics. We also propose a two-stage training procedure, where an additional fine-tuning stage on the classifier layers only with class-balanced data is shown to improve recognition performances.