难张量分解的欠定张量对角化

P. Tichavský, A. Phan, A. Cichocki
{"title":"难张量分解的欠定张量对角化","authors":"P. Tichavský, A. Phan, A. Cichocki","doi":"10.1109/CAMSAP.2017.8313082","DOIUrl":null,"url":null,"abstract":"Analysis of multidimensional arrays, usually called tensors, often becomes difficult in cases when the tensor rank (a minimum number of rank-one components) exceeds all the tensor dimensions. Traditional methods of canonical polyadic decomposition of such tensors, namely the alternating least squares, can be used, but a presence of a large number of false local minima can make the problem hard. Usually, multiple random initializations are advised in such cases, but the question is how many such random initializations are sufficient to get a good chance of finding the right solution. It appears that the number of the initializations can be very large. We propose a novel approach to the problem. The given tensor is augmented by some unknown parameters to the shape that admits ordinary tensor diagonalization, i.e., transforming the augmented tensor into an exact or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices. Three possible constraints are proposed to make the optimization problem well defined. The method can be modified for an under-determined block-term decomposition.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Under-Determined tensor diagonalization for decomposition of difficult tensors\",\"authors\":\"P. Tichavský, A. Phan, A. Cichocki\",\"doi\":\"10.1109/CAMSAP.2017.8313082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of multidimensional arrays, usually called tensors, often becomes difficult in cases when the tensor rank (a minimum number of rank-one components) exceeds all the tensor dimensions. Traditional methods of canonical polyadic decomposition of such tensors, namely the alternating least squares, can be used, but a presence of a large number of false local minima can make the problem hard. Usually, multiple random initializations are advised in such cases, but the question is how many such random initializations are sufficient to get a good chance of finding the right solution. It appears that the number of the initializations can be very large. We propose a novel approach to the problem. The given tensor is augmented by some unknown parameters to the shape that admits ordinary tensor diagonalization, i.e., transforming the augmented tensor into an exact or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices. Three possible constraints are proposed to make the optimization problem well defined. The method can be modified for an under-determined block-term decomposition.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当张量的秩(秩一分量的最小数量)超过所有张量维数时,通常称为张量的多维数组的分析变得困难。这种张量的经典多进分解的传统方法,即交替最小二乘,可以使用,但存在大量的假局部极小值会使问题变得困难。通常,在这种情况下,建议进行多个随机初始化,但问题是,有多少这样的随机初始化才足够有机会找到正确的解决方案。看起来初始化的数量可能非常大。我们提出了一种解决这个问题的新方法。给定张量通过一些未知参数增广到允许普通张量对角化的形状,即通过将张量乘以非正交可逆矩阵将增广张量转换为精确或近对角形式。提出了三种可能的约束条件,使优化问题得到很好的定义。该方法可以对不确定的块项分解进行修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Under-Determined tensor diagonalization for decomposition of difficult tensors
Analysis of multidimensional arrays, usually called tensors, often becomes difficult in cases when the tensor rank (a minimum number of rank-one components) exceeds all the tensor dimensions. Traditional methods of canonical polyadic decomposition of such tensors, namely the alternating least squares, can be used, but a presence of a large number of false local minima can make the problem hard. Usually, multiple random initializations are advised in such cases, but the question is how many such random initializations are sufficient to get a good chance of finding the right solution. It appears that the number of the initializations can be very large. We propose a novel approach to the problem. The given tensor is augmented by some unknown parameters to the shape that admits ordinary tensor diagonalization, i.e., transforming the augmented tensor into an exact or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices. Three possible constraints are proposed to make the optimization problem well defined. The method can be modified for an under-determined block-term decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信