基于层次聚类的财经新闻在线话题检测与跟踪

Xiangying Dai, Qingcai Chen, Xiaolong Wang, Jun Xu
{"title":"基于层次聚类的财经新闻在线话题检测与跟踪","authors":"Xiangying Dai, Qingcai Chen, Xiaolong Wang, Jun Xu","doi":"10.1109/ICMLC.2010.5580677","DOIUrl":null,"url":null,"abstract":"In this paper, we apply TDT technology to the vertical search engine in the financial field. The returned results are grouped into several topics with the stock as the unit. Then we show the topics to the users in time series order. As a result, users can easily learn about the important events which belong to a stock. Moreover, the causes and the effects of these events can also be found out easily. We improve the common agglomerative hierarchical clustering algorithm based on average-link method, which is then used to implement the retrospective topic detection and the online topic detection of news stories of the stocks. Additionally, the improved single pass clustering algorithm is employed to accomplish topic tracking. We consider that the feature terms which occur in the title of a news story contribute more during the similarity calculation and increase their corresponding weights. Experiments are performed on two datasets which are annotated by human judgment. The results show that the proposed method can effectively detect and track the online financial topics.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Online topic detection and tracking of financial news based on hierarchical clustering\",\"authors\":\"Xiangying Dai, Qingcai Chen, Xiaolong Wang, Jun Xu\",\"doi\":\"10.1109/ICMLC.2010.5580677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply TDT technology to the vertical search engine in the financial field. The returned results are grouped into several topics with the stock as the unit. Then we show the topics to the users in time series order. As a result, users can easily learn about the important events which belong to a stock. Moreover, the causes and the effects of these events can also be found out easily. We improve the common agglomerative hierarchical clustering algorithm based on average-link method, which is then used to implement the retrospective topic detection and the online topic detection of news stories of the stocks. Additionally, the improved single pass clustering algorithm is employed to accomplish topic tracking. We consider that the feature terms which occur in the title of a news story contribute more during the similarity calculation and increase their corresponding weights. Experiments are performed on two datasets which are annotated by human judgment. The results show that the proposed method can effectively detect and track the online financial topics.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

本文将TDT技术应用于金融领域的垂直搜索引擎。返回的结果以股票为单位分组到几个主题中。然后按时间序列顺序向用户显示主题。因此,用户可以很容易地了解属于股票的重要事件。此外,这些事件的原因和影响也很容易发现。基于平均链接法对常用的聚类分层聚类算法进行改进,并将其应用于股票新闻故事的回顾性话题检测和在线话题检测。此外,采用改进的单次聚类算法完成主题跟踪。我们认为在新闻标题中出现的特征项在相似度计算中贡献更大,并增加其相应的权重。实验在两个人工判断标注的数据集上进行。结果表明,该方法可以有效地检测和跟踪在线金融主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online topic detection and tracking of financial news based on hierarchical clustering
In this paper, we apply TDT technology to the vertical search engine in the financial field. The returned results are grouped into several topics with the stock as the unit. Then we show the topics to the users in time series order. As a result, users can easily learn about the important events which belong to a stock. Moreover, the causes and the effects of these events can also be found out easily. We improve the common agglomerative hierarchical clustering algorithm based on average-link method, which is then used to implement the retrospective topic detection and the online topic detection of news stories of the stocks. Additionally, the improved single pass clustering algorithm is employed to accomplish topic tracking. We consider that the feature terms which occur in the title of a news story contribute more during the similarity calculation and increase their corresponding weights. Experiments are performed on two datasets which are annotated by human judgment. The results show that the proposed method can effectively detect and track the online financial topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信