使用机器学习和形态学成像测量肝脏活检中的脂肪变性

N. Giannakeas, M. Tsipouras, A. Tzallas, M. G. Vavva, Maria Tsimplakidou, E. Karvounis, R. Forlano, P. Manousou
{"title":"使用机器学习和形态学成像测量肝脏活检中的脂肪变性","authors":"N. Giannakeas, M. Tsipouras, A. Tzallas, M. G. Vavva, Maria Tsimplakidou, E. Karvounis, R. Forlano, P. Manousou","doi":"10.1109/CBMS.2017.98","DOIUrl":null,"url":null,"abstract":"Non-Alcohol Liver Disease (NAFLD) is nowadays the most common liver disease in Western Countries. It is the chronic condition of fat expansion in liver, which is not associated with alcohol consumption. Quantitating steatosis in liver biopsies could provide objective measurement of the severity of the disease, instead of using semi-quantitative scoring systems. The current work, introduces an automated method for measuring steatosis in liver biopsies, using both machine learning and classical image processing techniques. Clustering is employed for tissue specimen detection, while an iterative morphological procedure is used for steatosis revealing. The method has been evaluated in a set of 20 liver biopsy images and the obtained results present ∼1% mean percentage error.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Measuring Steatosis in Liver Biopsies Using Machine Learning and Morphological Imaging\",\"authors\":\"N. Giannakeas, M. Tsipouras, A. Tzallas, M. G. Vavva, Maria Tsimplakidou, E. Karvounis, R. Forlano, P. Manousou\",\"doi\":\"10.1109/CBMS.2017.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Alcohol Liver Disease (NAFLD) is nowadays the most common liver disease in Western Countries. It is the chronic condition of fat expansion in liver, which is not associated with alcohol consumption. Quantitating steatosis in liver biopsies could provide objective measurement of the severity of the disease, instead of using semi-quantitative scoring systems. The current work, introduces an automated method for measuring steatosis in liver biopsies, using both machine learning and classical image processing techniques. Clustering is employed for tissue specimen detection, while an iterative morphological procedure is used for steatosis revealing. The method has been evaluated in a set of 20 liver biopsy images and the obtained results present ∼1% mean percentage error.\",\"PeriodicalId\":141105,\"journal\":{\"name\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2017.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

非酒精性肝病(NAFLD)是当今西方国家最常见的肝病。这是肝脏脂肪扩张的慢性疾病,与饮酒无关。定量肝活检中的脂肪变性可以提供疾病严重程度的客观测量,而不是使用半定量评分系统。目前的工作,介绍了一种自动化的方法来测量肝脏活检中的脂肪变性,使用机器学习和经典的图像处理技术。聚类用于组织标本检测,而迭代形态学过程用于脂肪变性揭示。该方法已在一组20张肝活检图像中进行了评估,所获得的结果存在1%的平均百分比误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Steatosis in Liver Biopsies Using Machine Learning and Morphological Imaging
Non-Alcohol Liver Disease (NAFLD) is nowadays the most common liver disease in Western Countries. It is the chronic condition of fat expansion in liver, which is not associated with alcohol consumption. Quantitating steatosis in liver biopsies could provide objective measurement of the severity of the disease, instead of using semi-quantitative scoring systems. The current work, introduces an automated method for measuring steatosis in liver biopsies, using both machine learning and classical image processing techniques. Clustering is employed for tissue specimen detection, while an iterative morphological procedure is used for steatosis revealing. The method has been evaluated in a set of 20 liver biopsy images and the obtained results present ∼1% mean percentage error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信