{"title":"极限成像及超越(演示录音)","authors":"K. Goda","doi":"10.1117/12.2192905","DOIUrl":null,"url":null,"abstract":"Imaging is an effective tool in scientific research, manufacturing, and medical practice. However, despite its importance, it is not easy to observe dynamical events that occur much faster or slower than the human time scale (found in photochemistry, phononics, fluidics, MEMS, and tribology). Unfortunately, traditional methods for imaging fall short in visualizing them due to their technical limitations. In this talk, I will introduce radically different approaches to imaging. I will first discuss ultrafast imaging and then talk about ultraslow imaging. I will show how these imaging tools help us better understand dynamical processes.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Imaging and Beyond (Presentation Recording)\",\"authors\":\"K. Goda\",\"doi\":\"10.1117/12.2192905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imaging is an effective tool in scientific research, manufacturing, and medical practice. However, despite its importance, it is not easy to observe dynamical events that occur much faster or slower than the human time scale (found in photochemistry, phononics, fluidics, MEMS, and tribology). Unfortunately, traditional methods for imaging fall short in visualizing them due to their technical limitations. In this talk, I will introduce radically different approaches to imaging. I will first discuss ultrafast imaging and then talk about ultraslow imaging. I will show how these imaging tools help us better understand dynamical processes.\",\"PeriodicalId\":432358,\"journal\":{\"name\":\"SPIE NanoScience + Engineering\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE NanoScience + Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2192905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2192905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme Imaging and Beyond (Presentation Recording)
Imaging is an effective tool in scientific research, manufacturing, and medical practice. However, despite its importance, it is not easy to observe dynamical events that occur much faster or slower than the human time scale (found in photochemistry, phononics, fluidics, MEMS, and tribology). Unfortunately, traditional methods for imaging fall short in visualizing them due to their technical limitations. In this talk, I will introduce radically different approaches to imaging. I will first discuss ultrafast imaging and then talk about ultraslow imaging. I will show how these imaging tools help us better understand dynamical processes.