语法很重要!语法控制的文本样式转移

Zhiqiang Hu, R. Lee, C. Aggarwal
{"title":"语法很重要!语法控制的文本样式转移","authors":"Zhiqiang Hu, R. Lee, C. Aggarwal","doi":"10.26615/978-954-452-072-4_064","DOIUrl":null,"url":null,"abstract":"Existing text style transfer (TST) methods rely on style classifiers to disentangle the text’s content and style attributes for text style transfer. While the style classifier plays a critical role in existing TST methods, there is no known investigation on its effect on the TST methods. In this paper, we conduct an empirical study on the limitations of the style classifiers used in existing TST methods. We demonstrated that the existing style classifiers cannot learn sentence syntax effectively and ultimately worsen existing TST models’ performance. To address this issue, we propose a novel Syntax-Aware Controllable Generation (SACG) model, which includes a syntax-aware style classifier that ensures learned style latent representations effectively capture the sentence structure for TST. Through extensive experiments on two popular text style transfer tasks, we show that our proposed method significantly outperforms twelve state-of-the-art methods. Our case studies have also demonstrated SACG’s ability to generate fluent target-style sentences that preserved the original content.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Syntax Matters! Syntax-Controlled in Text Style Transfer\",\"authors\":\"Zhiqiang Hu, R. Lee, C. Aggarwal\",\"doi\":\"10.26615/978-954-452-072-4_064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing text style transfer (TST) methods rely on style classifiers to disentangle the text’s content and style attributes for text style transfer. While the style classifier plays a critical role in existing TST methods, there is no known investigation on its effect on the TST methods. In this paper, we conduct an empirical study on the limitations of the style classifiers used in existing TST methods. We demonstrated that the existing style classifiers cannot learn sentence syntax effectively and ultimately worsen existing TST models’ performance. To address this issue, we propose a novel Syntax-Aware Controllable Generation (SACG) model, which includes a syntax-aware style classifier that ensures learned style latent representations effectively capture the sentence structure for TST. Through extensive experiments on two popular text style transfer tasks, we show that our proposed method significantly outperforms twelve state-of-the-art methods. Our case studies have also demonstrated SACG’s ability to generate fluent target-style sentences that preserved the original content.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-072-4_064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-072-4_064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的文本样式转移(TST)方法依赖于样式分类器来分离文本的内容和样式属性以进行文本样式转移。虽然风格分类器在现有的TST方法中起着至关重要的作用,但目前还没有对其对TST方法的影响进行研究。在本文中,我们对现有TST方法中使用的风格分类器的局限性进行了实证研究。我们证明了现有的风格分类器不能有效地学习句子语法,并最终恶化了现有的TST模型的性能。为了解决这个问题,我们提出了一种新的语法感知的可控生成(SACG)模型,该模型包括一个语法感知的风格分类器,以确保学习到的风格潜在表征有效地捕获TST的句子结构。通过对两种流行的文本风格迁移任务的广泛实验,我们表明我们提出的方法明显优于12种最先进的方法。我们的案例研究还证明了SACG能够生成流畅的目标风格句子,并保留了原始内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syntax Matters! Syntax-Controlled in Text Style Transfer
Existing text style transfer (TST) methods rely on style classifiers to disentangle the text’s content and style attributes for text style transfer. While the style classifier plays a critical role in existing TST methods, there is no known investigation on its effect on the TST methods. In this paper, we conduct an empirical study on the limitations of the style classifiers used in existing TST methods. We demonstrated that the existing style classifiers cannot learn sentence syntax effectively and ultimately worsen existing TST models’ performance. To address this issue, we propose a novel Syntax-Aware Controllable Generation (SACG) model, which includes a syntax-aware style classifier that ensures learned style latent representations effectively capture the sentence structure for TST. Through extensive experiments on two popular text style transfer tasks, we show that our proposed method significantly outperforms twelve state-of-the-art methods. Our case studies have also demonstrated SACG’s ability to generate fluent target-style sentences that preserved the original content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信