财务文件的词级情感可视化工具

Tomoki Ito, K. Tsubouchi, Hiroki Sakaji, Tatsuo Yamashita, K. Izumi
{"title":"财务文件的词级情感可视化工具","authors":"Tomoki Ito, K. Tsubouchi, Hiroki Sakaji, Tatsuo Yamashita, K. Izumi","doi":"10.1109/CIFEr.2019.8759116","DOIUrl":null,"url":null,"abstract":"It has a great demand for automatically visualizing word-level sentiment scores in financial documents in the form that even non-experts can briefly understand documents. In this paper, we aim to develop a method for automatically visualizing the original word-level sentiment (i.e., word-level sentiment before considering the contexts in a document) and the contextual word-level sentiment (i.e., word-level sentiment after considering the contexts in a document) of each term in a document. To achieve this aim, we develop a method for assigning both original and contextual word-level sentiment scores to words using the Layer-wise Relevance Propagation (LRP) method. The LRP based approach can consider the contextual information in assigning original and contextual sentiments to words, in contrast to the other approaches. Using synthetic and real financial textual datasets, we demonstrated the validity of our LRP based approach. Moreover, we propose two types of novel text-visualization frameworks: local word-level sentiment visualization (LWSV) and global word-level sentiment visualization (GWSV). The LWSV visualizes both original and contextual word-level sentiment of each term in a document. The GWSV visualizes both original and contextual word-level sentiments of documents in concept units. These types of text-visualization should be helpful for understanding financial documents quickly.","PeriodicalId":368382,"journal":{"name":"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Word-level Sentiment Visualizer for Financial Documents\",\"authors\":\"Tomoki Ito, K. Tsubouchi, Hiroki Sakaji, Tatsuo Yamashita, K. Izumi\",\"doi\":\"10.1109/CIFEr.2019.8759116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has a great demand for automatically visualizing word-level sentiment scores in financial documents in the form that even non-experts can briefly understand documents. In this paper, we aim to develop a method for automatically visualizing the original word-level sentiment (i.e., word-level sentiment before considering the contexts in a document) and the contextual word-level sentiment (i.e., word-level sentiment after considering the contexts in a document) of each term in a document. To achieve this aim, we develop a method for assigning both original and contextual word-level sentiment scores to words using the Layer-wise Relevance Propagation (LRP) method. The LRP based approach can consider the contextual information in assigning original and contextual sentiments to words, in contrast to the other approaches. Using synthetic and real financial textual datasets, we demonstrated the validity of our LRP based approach. Moreover, we propose two types of novel text-visualization frameworks: local word-level sentiment visualization (LWSV) and global word-level sentiment visualization (GWSV). The LWSV visualizes both original and contextual word-level sentiment of each term in a document. The GWSV visualizes both original and contextual word-level sentiments of documents in concept units. These types of text-visualization should be helpful for understanding financial documents quickly.\",\"PeriodicalId\":368382,\"journal\":{\"name\":\"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFEr.2019.8759116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFEr.2019.8759116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

它对自动可视化财务文档中的词级情感得分有很大的需求,即使是非专家也可以简单地理解文档。在本文中,我们的目标是开发一种方法来自动可视化文档中每个术语的原始词级情感(即在考虑文档中上下文之前的词级情感)和上下文词级情感(即在考虑文档中上下文之后的词级情感)。为了实现这一目标,我们开发了一种方法,使用分层关联传播(LRP)方法为单词分配原始和上下文词级情感得分。与其他方法相比,基于LRP的方法在为单词分配原始情感和上下文情感时可以考虑上下文信息。使用合成的和真实的金融文本数据集,我们证明了基于LRP方法的有效性。此外,我们还提出了两种新的文本可视化框架:局部词级情感可视化(LWSV)和全局词级情感可视化(GWSV)。LWSV可视化文档中每个术语的原始和上下文词级情感。GWSV以概念单位可视化文档的原始和上下文词级情感。这些类型的文本可视化应该有助于快速理解财务文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word-level Sentiment Visualizer for Financial Documents
It has a great demand for automatically visualizing word-level sentiment scores in financial documents in the form that even non-experts can briefly understand documents. In this paper, we aim to develop a method for automatically visualizing the original word-level sentiment (i.e., word-level sentiment before considering the contexts in a document) and the contextual word-level sentiment (i.e., word-level sentiment after considering the contexts in a document) of each term in a document. To achieve this aim, we develop a method for assigning both original and contextual word-level sentiment scores to words using the Layer-wise Relevance Propagation (LRP) method. The LRP based approach can consider the contextual information in assigning original and contextual sentiments to words, in contrast to the other approaches. Using synthetic and real financial textual datasets, we demonstrated the validity of our LRP based approach. Moreover, we propose two types of novel text-visualization frameworks: local word-level sentiment visualization (LWSV) and global word-level sentiment visualization (GWSV). The LWSV visualizes both original and contextual word-level sentiment of each term in a document. The GWSV visualizes both original and contextual word-level sentiments of documents in concept units. These types of text-visualization should be helpful for understanding financial documents quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信