鲁棒机器可用性问题

Guopeng Song, D. Kowalczyk, R. Leus
{"title":"鲁棒机器可用性问题","authors":"Guopeng Song, D. Kowalczyk, R. Leus","doi":"10.2139/ssrn.3052283","DOIUrl":null,"url":null,"abstract":"We define and solve the robust machine availability problem in a parallel machine environment, which aims to minimize the number of identical machines required while completing all the jobs before a given deadline. Our formulation preserves a user-defined robustness level regarding possible deviations in the job durations. For better computational performance, a branch-andprice procedure is proposed based on a set covering reformulation. We use zero-suppressed binary decision diagrams (ZDDs) for solving the pricing problem, which enable us to manage the difficulty entailed by the robustness considerations as well as by extra constraints imposed by branching decisions. Computational results are reported that show the effectiveness of a pricing solver with ZDDs compared with a MIP solver.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Robust Machine Availability Problem\",\"authors\":\"Guopeng Song, D. Kowalczyk, R. Leus\",\"doi\":\"10.2139/ssrn.3052283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define and solve the robust machine availability problem in a parallel machine environment, which aims to minimize the number of identical machines required while completing all the jobs before a given deadline. Our formulation preserves a user-defined robustness level regarding possible deviations in the job durations. For better computational performance, a branch-andprice procedure is proposed based on a set covering reformulation. We use zero-suppressed binary decision diagrams (ZDDs) for solving the pricing problem, which enable us to manage the difficulty entailed by the robustness considerations as well as by extra constraints imposed by branching decisions. Computational results are reported that show the effectiveness of a pricing solver with ZDDs compared with a MIP solver.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3052283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3052283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义并解决了并行机器环境中的鲁棒机器可用性问题,该问题的目标是在给定的截止日期之前完成所有作业并最小化所需的相同机器数量。我们的公式保留了用户定义的关于作业持续时间中可能偏差的健壮性水平。为了提高计算性能,提出了一种基于集合覆盖重构的分支定价过程。我们使用零抑制二进制决策图(zdd)来解决定价问题,这使我们能够管理由鲁棒性考虑以及分支决策施加的额外约束所带来的困难。计算结果表明,与MIP求解器相比,zdd定价求解器是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Robust Machine Availability Problem
We define and solve the robust machine availability problem in a parallel machine environment, which aims to minimize the number of identical machines required while completing all the jobs before a given deadline. Our formulation preserves a user-defined robustness level regarding possible deviations in the job durations. For better computational performance, a branch-andprice procedure is proposed based on a set covering reformulation. We use zero-suppressed binary decision diagrams (ZDDs) for solving the pricing problem, which enable us to manage the difficulty entailed by the robustness considerations as well as by extra constraints imposed by branching decisions. Computational results are reported that show the effectiveness of a pricing solver with ZDDs compared with a MIP solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信