误差控制用多项式环F_2^N [X] / (X^N-1)的理想码发生器

Olege. Fanuel
{"title":"误差控制用多项式环F_2^N [X] / (X^N-1)的理想码发生器","authors":"Olege. Fanuel","doi":"10.12988/imf.2019.9732","DOIUrl":null,"url":null,"abstract":"Shannon introduced error detection and correction codes to address the growing need of efficiency and reliability of code vectors. One of the structures that can generate these codes is a set of ideals of the candidate polynomial ring. Generators of codes of ideals of polynomial rings have not been fully characterized. In this research the generators of codes of the candidate polynomial ring Fn 2 [x]/〈xn − 1〉 have been investigated and characterized using lattices, simplex Hamming codes and isometries. Mathematics Subject Classification: Primary 20K30; Secondary 16P10","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the generators of codes of ideals of the polynomial ring F_2^N [X] / (X^N-1) for error control\",\"authors\":\"Olege. Fanuel\",\"doi\":\"10.12988/imf.2019.9732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shannon introduced error detection and correction codes to address the growing need of efficiency and reliability of code vectors. One of the structures that can generate these codes is a set of ideals of the candidate polynomial ring. Generators of codes of ideals of polynomial rings have not been fully characterized. In this research the generators of codes of the candidate polynomial ring Fn 2 [x]/〈xn − 1〉 have been investigated and characterized using lattices, simplex Hamming codes and isometries. Mathematics Subject Classification: Primary 20K30; Secondary 16P10\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2019.9732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2019.9732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

香农引入了错误检测和纠正码,以满足对码向量的效率和可靠性日益增长的需求。可以产生这些码的结构之一是候选多项式环的一组理想。多项式环的理想码的产生器还没有得到充分的表征。本文研究了候选多项式环Fn 2 [x]/ < xn−1 >的码发生器,并利用格、单纯汉明码和等距图对其进行了表征。数学学科分类:小学20K30;二次16 p10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the generators of codes of ideals of the polynomial ring F_2^N [X] / (X^N-1) for error control
Shannon introduced error detection and correction codes to address the growing need of efficiency and reliability of code vectors. One of the structures that can generate these codes is a set of ideals of the candidate polynomial ring. Generators of codes of ideals of polynomial rings have not been fully characterized. In this research the generators of codes of the candidate polynomial ring Fn 2 [x]/〈xn − 1〉 have been investigated and characterized using lattices, simplex Hamming codes and isometries. Mathematics Subject Classification: Primary 20K30; Secondary 16P10
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信