{"title":"大型交点交换网络的可靠设计","authors":"A. Varma, Joydeep Ghosh, C. J. Georgiou","doi":"10.1109/FTCS.1988.5338","DOIUrl":null,"url":null,"abstract":"A major source of transient errors and unreliable operation of large crosspoint switching networks is the simultaneous switching ( Delta I) noise that is caused by the switching of a large number of off-chip drivers in a chip. An architectural solution to this problem is presented for networks constructed from one-sided crosspoint switching chips. The method seeks to achieve a uniform distribution of active drivers among the chips by rearranging a subset of the existing connections when a new connection is made. The problem is studied in the context of a one-sided crosspoint network with N=rn ports constructed from individual switching chips of size n*m/2. The authors show that the lower bound of m/r active drivers per chip can always be maintained in practice when m/r is an even number. The maximum number of rearrangements needed is min(m/2-1, 2r-1). In addition, the rearrangements are confined to two chip columns of the matrix.<<ETX>>","PeriodicalId":171148,"journal":{"name":"[1988] The Eighteenth International Symposium on Fault-Tolerant Computing. Digest of Papers","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reliable design of large crosspoint switching networks\",\"authors\":\"A. Varma, Joydeep Ghosh, C. J. Georgiou\",\"doi\":\"10.1109/FTCS.1988.5338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major source of transient errors and unreliable operation of large crosspoint switching networks is the simultaneous switching ( Delta I) noise that is caused by the switching of a large number of off-chip drivers in a chip. An architectural solution to this problem is presented for networks constructed from one-sided crosspoint switching chips. The method seeks to achieve a uniform distribution of active drivers among the chips by rearranging a subset of the existing connections when a new connection is made. The problem is studied in the context of a one-sided crosspoint network with N=rn ports constructed from individual switching chips of size n*m/2. The authors show that the lower bound of m/r active drivers per chip can always be maintained in practice when m/r is an even number. The maximum number of rearrangements needed is min(m/2-1, 2r-1). In addition, the rearrangements are confined to two chip columns of the matrix.<<ETX>>\",\"PeriodicalId\":171148,\"journal\":{\"name\":\"[1988] The Eighteenth International Symposium on Fault-Tolerant Computing. Digest of Papers\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] The Eighteenth International Symposium on Fault-Tolerant Computing. Digest of Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1988.5338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] The Eighteenth International Symposium on Fault-Tolerant Computing. Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1988.5338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliable design of large crosspoint switching networks
A major source of transient errors and unreliable operation of large crosspoint switching networks is the simultaneous switching ( Delta I) noise that is caused by the switching of a large number of off-chip drivers in a chip. An architectural solution to this problem is presented for networks constructed from one-sided crosspoint switching chips. The method seeks to achieve a uniform distribution of active drivers among the chips by rearranging a subset of the existing connections when a new connection is made. The problem is studied in the context of a one-sided crosspoint network with N=rn ports constructed from individual switching chips of size n*m/2. The authors show that the lower bound of m/r active drivers per chip can always be maintained in practice when m/r is an even number. The maximum number of rearrangements needed is min(m/2-1, 2r-1). In addition, the rearrangements are confined to two chip columns of the matrix.<>