形式化逻辑的非正式化

A. Kakas
{"title":"形式化逻辑的非正式化","authors":"A. Kakas","doi":"10.22329/IL.V39I2.5169","DOIUrl":null,"url":null,"abstract":"This paper presents a way in which formal logic can be understood and reformulated in terms of argumentation that can help us unify formal and informal reasoning. Classical deductive reasoning will be expressed entirely in terms of notions and concepts from argumentation so that formal logical entailment is equivalently captured via the arguments that win between those supporting concluding formulae and arguments supporting contradictory formulae. This allows us to go beyond Classical Logic and smoothly connect it with human reasoning, thus providing a uniform argumentation-based view of both informal and formal logic.","PeriodicalId":190210,"journal":{"name":"Bridging@CogSci","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Informalizing Formal Logic\",\"authors\":\"A. Kakas\",\"doi\":\"10.22329/IL.V39I2.5169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a way in which formal logic can be understood and reformulated in terms of argumentation that can help us unify formal and informal reasoning. Classical deductive reasoning will be expressed entirely in terms of notions and concepts from argumentation so that formal logical entailment is equivalently captured via the arguments that win between those supporting concluding formulae and arguments supporting contradictory formulae. This allows us to go beyond Classical Logic and smoothly connect it with human reasoning, thus providing a uniform argumentation-based view of both informal and formal logic.\",\"PeriodicalId\":190210,\"journal\":{\"name\":\"Bridging@CogSci\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bridging@CogSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22329/IL.V39I2.5169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bridging@CogSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22329/IL.V39I2.5169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种形式逻辑可以被理解和重新表述的方式,可以帮助我们统一形式和非正式推理。经典演绎推理将完全用论证中的概念和概念来表达,因此形式逻辑蕴涵是通过在支持结论公式和支持矛盾公式的论点之间获胜的论点来获得的。这使我们能够超越经典逻辑,并顺利地将其与人类推理联系起来,从而为非正式逻辑和形式逻辑提供统一的基于论证的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Informalizing Formal Logic
This paper presents a way in which formal logic can be understood and reformulated in terms of argumentation that can help us unify formal and informal reasoning. Classical deductive reasoning will be expressed entirely in terms of notions and concepts from argumentation so that formal logical entailment is equivalently captured via the arguments that win between those supporting concluding formulae and arguments supporting contradictory formulae. This allows us to go beyond Classical Logic and smoothly connect it with human reasoning, thus providing a uniform argumentation-based view of both informal and formal logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信