基于多层粒子滤波和扩展EM聚类的图像多目标跟踪

J. Buyer, M. Vollert, Mihai Kocsis, Nico Susmann, R. Zöllner
{"title":"基于多层粒子滤波和扩展EM聚类的图像多目标跟踪","authors":"J. Buyer, M. Vollert, Mihai Kocsis, Nico Susmann, R. Zöllner","doi":"10.1109/MFI.2017.8170391","DOIUrl":null,"url":null,"abstract":"The paper presents an approach for tracking a variable number of objects by using a multi-layer particle filter combined with an extended Expectation Maximization (EM) clustering. The approach works on basis of binary foreground images coming from previous background subtraction. The multi-layer particle filter is an improvement of a conventional particle filter approach. It uses an introduced adaptive layer distribution spanned over the tracking area, which determines the areal extents of the particles. Thus, the multi-modal posterior distribution representing the objects is approximated with locally different resolutions. In addition, the layer distribution is used to find new appearing objects. In order to generate an object list out of the particle density, an EM clustering is used. The basic algorithm is extended with an estimation of the needful number of clusters by iteratively splitting and comparing the overall cluster areas. The new tracking approach improves tracking quality and robustness compared to the conventional particle filter approach. Experimental results are shown using the example of a traffic scene in a roundabout.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image-based multi-target tracking using a multi-layer particle filter and extended EM clustering\",\"authors\":\"J. Buyer, M. Vollert, Mihai Kocsis, Nico Susmann, R. Zöllner\",\"doi\":\"10.1109/MFI.2017.8170391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an approach for tracking a variable number of objects by using a multi-layer particle filter combined with an extended Expectation Maximization (EM) clustering. The approach works on basis of binary foreground images coming from previous background subtraction. The multi-layer particle filter is an improvement of a conventional particle filter approach. It uses an introduced adaptive layer distribution spanned over the tracking area, which determines the areal extents of the particles. Thus, the multi-modal posterior distribution representing the objects is approximated with locally different resolutions. In addition, the layer distribution is used to find new appearing objects. In order to generate an object list out of the particle density, an EM clustering is used. The basic algorithm is extended with an estimation of the needful number of clusters by iteratively splitting and comparing the overall cluster areas. The new tracking approach improves tracking quality and robustness compared to the conventional particle filter approach. Experimental results are shown using the example of a traffic scene in a roundabout.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种结合扩展期望最大化聚类的多层粒子滤波方法来跟踪可变数量的目标。该方法是基于之前的背景减法得到的二值前景图像。多层粒子滤波是对传统粒子滤波方法的改进。它使用一个引入的自适应层分布跨越跟踪区域,这决定了粒子的面积范围。因此,代表目标的多模态后验分布近似于局部不同的分辨率。此外,层分布用于发现新出现的对象。为了从粒子密度中生成目标列表,使用了EM聚类。对基本算法进行了扩展,通过迭代分割和比较整个聚类区域来估计所需的聚类数量。与传统的粒子滤波方法相比,新的跟踪方法提高了跟踪质量和鲁棒性。以环岛交通场景为例,给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-based multi-target tracking using a multi-layer particle filter and extended EM clustering
The paper presents an approach for tracking a variable number of objects by using a multi-layer particle filter combined with an extended Expectation Maximization (EM) clustering. The approach works on basis of binary foreground images coming from previous background subtraction. The multi-layer particle filter is an improvement of a conventional particle filter approach. It uses an introduced adaptive layer distribution spanned over the tracking area, which determines the areal extents of the particles. Thus, the multi-modal posterior distribution representing the objects is approximated with locally different resolutions. In addition, the layer distribution is used to find new appearing objects. In order to generate an object list out of the particle density, an EM clustering is used. The basic algorithm is extended with an estimation of the needful number of clusters by iteratively splitting and comparing the overall cluster areas. The new tracking approach improves tracking quality and robustness compared to the conventional particle filter approach. Experimental results are shown using the example of a traffic scene in a roundabout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信