BMAP/M/∞队列的稳定性条件

Moeko Yajima, Tuan Phung-Duc, H. Masuyama
{"title":"BMAP/M/∞队列的稳定性条件","authors":"Moeko Yajima, Tuan Phung-Duc, H. Masuyama","doi":"10.1145/3016032.3016046","DOIUrl":null,"url":null,"abstract":"This paper considers a BMAP/M/∞ queue with a batch Markovian arrival process (BMAP) and an exponential service time distribution. We first prove that the BMAP/M/∞ queue is stable if and only if the expectation of the logarithm of the batch-size distribution is finite. Using this result, we also present the stability condition for an infinite-server queue with a multiclass batch Markovian arrival process and class-dependent exponential service times.","PeriodicalId":269685,"journal":{"name":"Proceedings of the 11th International Conference on Queueing Theory and Network Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The stability condition of BMAP/M/∞ queues\",\"authors\":\"Moeko Yajima, Tuan Phung-Duc, H. Masuyama\",\"doi\":\"10.1145/3016032.3016046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a BMAP/M/∞ queue with a batch Markovian arrival process (BMAP) and an exponential service time distribution. We first prove that the BMAP/M/∞ queue is stable if and only if the expectation of the logarithm of the batch-size distribution is finite. Using this result, we also present the stability condition for an infinite-server queue with a multiclass batch Markovian arrival process and class-dependent exponential service times.\",\"PeriodicalId\":269685,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Queueing Theory and Network Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Queueing Theory and Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3016032.3016046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Queueing Theory and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3016032.3016046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究一类具有批量马尔可夫到达过程(BMAP)和服务时间指数分布的BMAP/M/∞队列。首先证明了BMAP/M/∞队列是稳定的当且仅当批大小分布的对数期望是有限的。利用这一结果,我们还给出了一类具有多类批处理马尔可夫到达过程和类相关指数服务时间的无限服务器队列的稳定性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stability condition of BMAP/M/∞ queues
This paper considers a BMAP/M/∞ queue with a batch Markovian arrival process (BMAP) and an exponential service time distribution. We first prove that the BMAP/M/∞ queue is stable if and only if the expectation of the logarithm of the batch-size distribution is finite. Using this result, we also present the stability condition for an infinite-server queue with a multiclass batch Markovian arrival process and class-dependent exponential service times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信