定义艺术中的孵化

Greg Philbrick, C. Kaplan
{"title":"定义艺术中的孵化","authors":"Greg Philbrick, C. Kaplan","doi":"10.2312/exp.20191082","DOIUrl":null,"url":null,"abstract":"We define hatching---a drawing technique---as rigorously as possible. A pure mathematical formulation or even a binary this-or-that definition is unreachable, but useful insights come from driving as close as we can. First we explain hatching's purposes. Then we define hatching as the use of patches: groups of roughly parallel curves that form flexible, simple patterns. After elaborating on this definition's parts, we briefly treat considerations for research in expressive rendering.","PeriodicalId":407491,"journal":{"name":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Defining hatching in art\",\"authors\":\"Greg Philbrick, C. Kaplan\",\"doi\":\"10.2312/exp.20191082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define hatching---a drawing technique---as rigorously as possible. A pure mathematical formulation or even a binary this-or-that definition is unreachable, but useful insights come from driving as close as we can. First we explain hatching's purposes. Then we define hatching as the use of patches: groups of roughly parallel curves that form flexible, simple patterns. After elaborating on this definition's parts, we briefly treat considerations for research in expressive rendering.\",\"PeriodicalId\":407491,\"journal\":{\"name\":\"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/exp.20191082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/exp.20191082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们定义孵化-一种绘画技术-尽可能严格。一个纯粹的数学公式,甚至一个二元的这样或那样的定义是无法达到的,但有用的见解来自于我们尽可能接近的驾驶。首先我们解释孵化的目的。然后我们将孵化定义为使用补丁:一组大致平行的曲线形成灵活,简单的图案。在详细阐述了这个定义的各个部分之后,我们简要地讨论了表现性渲染研究的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining hatching in art
We define hatching---a drawing technique---as rigorously as possible. A pure mathematical formulation or even a binary this-or-that definition is unreachable, but useful insights come from driving as close as we can. First we explain hatching's purposes. Then we define hatching as the use of patches: groups of roughly parallel curves that form flexible, simple patterns. After elaborating on this definition's parts, we briefly treat considerations for research in expressive rendering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信