源信道编码中典型随机码的误差指数

Ran Averbuch, N. Merhav
{"title":"源信道编码中典型随机码的误差指数","authors":"Ran Averbuch, N. Merhav","doi":"10.1109/ITW44776.2019.8989340","DOIUrl":null,"url":null,"abstract":"The error exponent of the typical random code (TRC) in a communication scenario of source-channel coding with side information at the decoder is the main objective of this work. We derive a lower bound, which is at least as large as the random binning-coding exponent due to Merhav (2016), and we show numerically that it may be strictly larger. We deduce the exponents of the TRCs in two special cases: Slepian-Wolf (SW) source coding and joint source-channel coding. Each of these models is further studied in order to provide deeper intuition concerning the behavior of the typical random code. We also propose an alternative expression for the error exponent of typical random binning in SW model, which is given by an optimization over four parameters only, instead of a computationally heavy optimization over probability distributions.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error Exponents of Typical Random Codes of Source-Channel Coding\",\"authors\":\"Ran Averbuch, N. Merhav\",\"doi\":\"10.1109/ITW44776.2019.8989340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The error exponent of the typical random code (TRC) in a communication scenario of source-channel coding with side information at the decoder is the main objective of this work. We derive a lower bound, which is at least as large as the random binning-coding exponent due to Merhav (2016), and we show numerically that it may be strictly larger. We deduce the exponents of the TRCs in two special cases: Slepian-Wolf (SW) source coding and joint source-channel coding. Each of these models is further studied in order to provide deeper intuition concerning the behavior of the typical random code. We also propose an alternative expression for the error exponent of typical random binning in SW model, which is given by an optimization over four parameters only, instead of a computationally heavy optimization over probability distributions.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是研究在解码器处有侧信息的源信道编码通信场景下的典型随机码(TRC)的误差指数。我们推导了一个下界,它至少与Merhav(2016)的随机分组编码指数一样大,并且我们在数值上表明它可能严格更大。我们推导了两种特殊情况下的TRCs指数:Slepian-Wolf (SW)源编码和联合源信道编码。为了提供关于典型随机码行为的更深入的直觉,我们进一步研究了这些模型中的每一个。我们还提出了SW模型中典型随机分组误差指数的替代表达式,该表达式仅通过对四个参数的优化给出,而不是对概率分布进行计算量大的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Exponents of Typical Random Codes of Source-Channel Coding
The error exponent of the typical random code (TRC) in a communication scenario of source-channel coding with side information at the decoder is the main objective of this work. We derive a lower bound, which is at least as large as the random binning-coding exponent due to Merhav (2016), and we show numerically that it may be strictly larger. We deduce the exponents of the TRCs in two special cases: Slepian-Wolf (SW) source coding and joint source-channel coding. Each of these models is further studied in order to provide deeper intuition concerning the behavior of the typical random code. We also propose an alternative expression for the error exponent of typical random binning in SW model, which is given by an optimization over four parameters only, instead of a computationally heavy optimization over probability distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信