HTM人脸识别的生物记忆模型

O. Krestinskaya, A. P. James
{"title":"HTM人脸识别的生物记忆模型","authors":"O. Krestinskaya, A. P. James","doi":"10.1109/ICACCI.2016.7732265","DOIUrl":null,"url":null,"abstract":"Inspired from the working principle of human memory, we propose a new algorithm for storing HTM features detected from images. The resulting features from the training set require lower memory than existing HTM training set. The proposed features are tested in a face recognition problem using the benchmark AR dataset. the simulation results show that the proposed algorithm gives higher face recognition accuracy, in comparison to the conventional methods.","PeriodicalId":371328,"journal":{"name":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bioinspired memory model for HTM face recognition\",\"authors\":\"O. Krestinskaya, A. P. James\",\"doi\":\"10.1109/ICACCI.2016.7732265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired from the working principle of human memory, we propose a new algorithm for storing HTM features detected from images. The resulting features from the training set require lower memory than existing HTM training set. The proposed features are tested in a face recognition problem using the benchmark AR dataset. the simulation results show that the proposed algorithm gives higher face recognition accuracy, in comparison to the conventional methods.\",\"PeriodicalId\":371328,\"journal\":{\"name\":\"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCI.2016.7732265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2016.7732265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

受人类记忆工作原理的启发,我们提出了一种新的算法来存储从图像中检测到的HTM特征。与现有的HTM训练集相比,训练集的结果特征需要更少的内存。使用基准AR数据集在人脸识别问题中测试了所提出的特征。仿真结果表明,与传统的人脸识别方法相比,该算法具有更高的人脸识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired memory model for HTM face recognition
Inspired from the working principle of human memory, we propose a new algorithm for storing HTM features detected from images. The resulting features from the training set require lower memory than existing HTM training set. The proposed features are tested in a face recognition problem using the benchmark AR dataset. the simulation results show that the proposed algorithm gives higher face recognition accuracy, in comparison to the conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信