施主-受主三嵌段共聚物光伏材料的光物理和电荷转移

Kyra N Schwarz, D. Jones, T. Smith, K. Ghiggino
{"title":"施主-受主三嵌段共聚物光伏材料的光物理和电荷转移","authors":"Kyra N Schwarz, D. Jones, T. Smith, K. Ghiggino","doi":"10.1117/12.2076224","DOIUrl":null,"url":null,"abstract":"Efficient conversion of solar energy to electricity in low-cost organic photovoltaic (OPV) devices requires the complex interplay between multiple processes and components over various length and time scales. Optimizing device morphology to ensure efficient exciton diffusion and charge transport as well as ensuring efficient charge photogeneration is necessary to achieve optimum performance in new materials. The conjugated polymer electron donor PFM (poly(9,9-diocetyluorene-co-bis-N,N-(4-methylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine)) and electron acceptor F8BT (poly[(9,9-di-n-octyluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)), comprise the novel triblock copolymer PFM-F8BT-PFM. This copolymer is designed to phase separate on the 20-30 nm scale, a domain size ideal for maximizing exciton collection at the donor-acceptor interface. Using steady-state and ultrafast spectroscopic characterization including high repetition rate transient absorption spectroscopy, the dynamics of charge and energy transfer of the component polymers and the triblock co-polymer have been investigated. The results demonstrate that for the homopolymers solvent dependent exciton transport processes dominate, while in the triblock copolymer solutions transient spectroscopy provides evidence for interfacial charge separation.","PeriodicalId":358951,"journal":{"name":"Optics & Photonics - Photonic Devices + Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photophysics and charge transfer in donor-acceptor triblock copolymer photovoltaic materials\",\"authors\":\"Kyra N Schwarz, D. Jones, T. Smith, K. Ghiggino\",\"doi\":\"10.1117/12.2076224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient conversion of solar energy to electricity in low-cost organic photovoltaic (OPV) devices requires the complex interplay between multiple processes and components over various length and time scales. Optimizing device morphology to ensure efficient exciton diffusion and charge transport as well as ensuring efficient charge photogeneration is necessary to achieve optimum performance in new materials. The conjugated polymer electron donor PFM (poly(9,9-diocetyluorene-co-bis-N,N-(4-methylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine)) and electron acceptor F8BT (poly[(9,9-di-n-octyluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)), comprise the novel triblock copolymer PFM-F8BT-PFM. This copolymer is designed to phase separate on the 20-30 nm scale, a domain size ideal for maximizing exciton collection at the donor-acceptor interface. Using steady-state and ultrafast spectroscopic characterization including high repetition rate transient absorption spectroscopy, the dynamics of charge and energy transfer of the component polymers and the triblock co-polymer have been investigated. The results demonstrate that for the homopolymers solvent dependent exciton transport processes dominate, while in the triblock copolymer solutions transient spectroscopy provides evidence for interfacial charge separation.\",\"PeriodicalId\":358951,\"journal\":{\"name\":\"Optics & Photonics - Photonic Devices + Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Photonics - Photonic Devices + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2076224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Photonics - Photonic Devices + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2076224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低成本的有机光伏(OPV)设备中,太阳能到电能的有效转换需要多个过程和组件在不同长度和时间尺度上的复杂相互作用。优化器件形态以确保有效的激子扩散和电荷输运以及确保有效的电荷光产生是实现新材料最佳性能所必需的。共轭聚合物电子给体PFM(聚(9,9-二辛基芴-co-双-N,N-(4-甲基苯基)-双-N,N-苯基-1,4-苯二胺))和电子受体F8BT(聚[(9,9-二-正辛基芴基-2,7-二基)-alt-(苯并[2,1,3]噻二唑-4,8-二基))组成新型三嵌段共聚物PFM-F8BT-PFM。这种共聚物被设计为在20-30纳米尺度上相分离,这是在供体-受体界面上最大化激子收集的理想尺寸。利用稳态和超快光谱表征,包括高重复率瞬态吸收光谱,研究了组分聚合物和三嵌段共聚物的电荷和能量传递动力学。结果表明,在均聚物中,溶剂依赖激子输运过程占主导地位,而在三嵌段共聚物溶液中,瞬态光谱为界面电荷分离提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photophysics and charge transfer in donor-acceptor triblock copolymer photovoltaic materials
Efficient conversion of solar energy to electricity in low-cost organic photovoltaic (OPV) devices requires the complex interplay between multiple processes and components over various length and time scales. Optimizing device morphology to ensure efficient exciton diffusion and charge transport as well as ensuring efficient charge photogeneration is necessary to achieve optimum performance in new materials. The conjugated polymer electron donor PFM (poly(9,9-diocetyluorene-co-bis-N,N-(4-methylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine)) and electron acceptor F8BT (poly[(9,9-di-n-octyluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)), comprise the novel triblock copolymer PFM-F8BT-PFM. This copolymer is designed to phase separate on the 20-30 nm scale, a domain size ideal for maximizing exciton collection at the donor-acceptor interface. Using steady-state and ultrafast spectroscopic characterization including high repetition rate transient absorption spectroscopy, the dynamics of charge and energy transfer of the component polymers and the triblock co-polymer have been investigated. The results demonstrate that for the homopolymers solvent dependent exciton transport processes dominate, while in the triblock copolymer solutions transient spectroscopy provides evidence for interfacial charge separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信