一类具有时滞参数的积分动力系统的数值分析方法

A. Tynda
{"title":"一类具有时滞参数的积分动力系统的数值分析方法","authors":"A. Tynda","doi":"10.15507/2079-6900.25.202301.565-577","DOIUrl":null,"url":null,"abstract":"The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis (−∞,0]\n, a direct method for solving the signal recovery problem, and iterative methods for solving a nonlinear Volterra integral equation with a constant delay. Special quadrature formulas based on orthogonal Lagger polynomials are used to approximate improper integrals on the semiaxis. The results of numerical experiments confirm the convergence of suggested methods. The proposed approaches can also be applied to other classes of nonlinear equations with delays.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods of numerical analysis for some integral dynamical systems with delay arguments\",\"authors\":\"A. Tynda\",\"doi\":\"10.15507/2079-6900.25.202301.565-577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis (−∞,0]\\n, a direct method for solving the signal recovery problem, and iterative methods for solving a nonlinear Volterra integral equation with a constant delay. Special quadrature formulas based on orthogonal Lagger polynomials are used to approximate improper integrals on the semiaxis. The results of numerical experiments confirm the convergence of suggested methods. The proposed approaches can also be applied to other classes of nonlinear equations with delays.\",\"PeriodicalId\":273445,\"journal\":{\"name\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/2079-6900.25.202301.565-577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.25.202301.565-577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是建立直接和迭代的数值方法来求解具有遗传分量的泛函方程。这些方程是建模动力系统的方便工具。特别是,它们被用于按寿命有限的年龄构成的人口模型。考虑了基于各种时滞参数的积分微分方程和积分方程的模型。对于非线性方程,采用改进的Newton-Kantorovich格式对算子进行线性化处理。采用直接正交法和简单迭代法对线性方程进行离散化。本文构造了求解半轴(−∞,0)上非线性积分-微分方程的迭代方法、求解信号恢复问题的直接方法和求解具有常延迟的非线性Volterra积分方程的迭代方法。利用基于正交拉格多项式的特殊正交公式来近似半轴上的反常积分。数值实验结果证实了所提方法的收敛性。所提出的方法也可以应用于其他类型的非线性时滞方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods of numerical analysis for some integral dynamical systems with delay arguments
The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis (−∞,0] , a direct method for solving the signal recovery problem, and iterative methods for solving a nonlinear Volterra integral equation with a constant delay. Special quadrature formulas based on orthogonal Lagger polynomials are used to approximate improper integrals on the semiaxis. The results of numerical experiments confirm the convergence of suggested methods. The proposed approaches can also be applied to other classes of nonlinear equations with delays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信