Y. Y. Tan, Felix Staudigl, Lukas Jünger, Anna Drewes, R. Leupers, J. Joseph
{"title":"EmuNoC:基于fpga的快速灵活的片上网络原型混合仿真","authors":"Y. Y. Tan, Felix Staudigl, Lukas Jünger, Anna Drewes, R. Leupers, J. Joseph","doi":"10.1109/FPL57034.2022.00058","DOIUrl":null,"url":null,"abstract":"Networks-on-Chips (NoCs) recently became widely used, from multi-core CPUs to edge-AI accelerators. Emulation on FPGAs promises to accelerate their RTL modeling compared to slow simulations. However, realistic test stimuli are challenging to generate in hardware for diverse applications. In other words, both a fast and flexible design framework is required. The most promising solution is hybrid emulation, in which parts of the design are simulated in software, and the other parts are emulated in hardware. This paper proposes a novel hybrid emulation framework called EmuNoC. We introduce a clock-synchronization method and software-only packet generation that improves the emulation speed by 36.3 × to 79.3 × over state-of-the-art frameworks while retaining the flexibility of a pure-software interface for stimuli simulation. We also increased the area efficiency to model up to an NoC with 169 routers on a single FPGA, while previous frameworks only achieved 64 routers.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EmuNoC: Hybrid Emulation for Fast and Flexible Network-on-Chip Prototyping on FPGAs\",\"authors\":\"Y. Y. Tan, Felix Staudigl, Lukas Jünger, Anna Drewes, R. Leupers, J. Joseph\",\"doi\":\"10.1109/FPL57034.2022.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks-on-Chips (NoCs) recently became widely used, from multi-core CPUs to edge-AI accelerators. Emulation on FPGAs promises to accelerate their RTL modeling compared to slow simulations. However, realistic test stimuli are challenging to generate in hardware for diverse applications. In other words, both a fast and flexible design framework is required. The most promising solution is hybrid emulation, in which parts of the design are simulated in software, and the other parts are emulated in hardware. This paper proposes a novel hybrid emulation framework called EmuNoC. We introduce a clock-synchronization method and software-only packet generation that improves the emulation speed by 36.3 × to 79.3 × over state-of-the-art frameworks while retaining the flexibility of a pure-software interface for stimuli simulation. We also increased the area efficiency to model up to an NoC with 169 routers on a single FPGA, while previous frameworks only achieved 64 routers.\",\"PeriodicalId\":380116,\"journal\":{\"name\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL57034.2022.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EmuNoC: Hybrid Emulation for Fast and Flexible Network-on-Chip Prototyping on FPGAs
Networks-on-Chips (NoCs) recently became widely used, from multi-core CPUs to edge-AI accelerators. Emulation on FPGAs promises to accelerate their RTL modeling compared to slow simulations. However, realistic test stimuli are challenging to generate in hardware for diverse applications. In other words, both a fast and flexible design framework is required. The most promising solution is hybrid emulation, in which parts of the design are simulated in software, and the other parts are emulated in hardware. This paper proposes a novel hybrid emulation framework called EmuNoC. We introduce a clock-synchronization method and software-only packet generation that improves the emulation speed by 36.3 × to 79.3 × over state-of-the-art frameworks while retaining the flexibility of a pure-software interface for stimuli simulation. We also increased the area efficiency to model up to an NoC with 169 routers on a single FPGA, while previous frameworks only achieved 64 routers.