基于自我训练和过采样的意大利语仇恨言论检测

E. Leonardelli, S. Menini, Sara Tonelli
{"title":"基于自我训练和过采样的意大利语仇恨言论检测","authors":"E. Leonardelli, S. Menini, Sara Tonelli","doi":"10.4000/BOOKS.AACCADEMIA.6934","DOIUrl":null,"url":null,"abstract":"We describe in this paper the system submitted by the DH-FBK team to the HaSpeeDe evaluation task, and dealing with Italian hate speech detection (Task A). While we adopt a standard approach for fine-tuning AlBERTo, the Italian BERT model trained on tweets, we propose to improve the final classification performance by two additional steps, i.e. self-training and oversampling. Indeed, we extend the initial training data with additional silver data, carefully sampled from domain-specific tweets and obtained after first training our system only with the task training data. Then, we retrain the classifier by merging silver and task training data but oversampling the latter, so that the obtained model is more robust to possible inconsistencies in the silver data. With this configuration, we obtain a macro-averaged F1 of 0.753 on tweets, and 0.702 on news headlines.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"DH-FBK @ HaSpeeDe2: Italian Hate Speech Detection via Self-Training and Oversampling\",\"authors\":\"E. Leonardelli, S. Menini, Sara Tonelli\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe in this paper the system submitted by the DH-FBK team to the HaSpeeDe evaluation task, and dealing with Italian hate speech detection (Task A). While we adopt a standard approach for fine-tuning AlBERTo, the Italian BERT model trained on tweets, we propose to improve the final classification performance by two additional steps, i.e. self-training and oversampling. Indeed, we extend the initial training data with additional silver data, carefully sampled from domain-specific tweets and obtained after first training our system only with the task training data. Then, we retrain the classifier by merging silver and task training data but oversampling the latter, so that the obtained model is more robust to possible inconsistencies in the silver data. With this configuration, we obtain a macro-averaged F1 of 0.753 on tweets, and 0.702 on news headlines.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们在本文中描述了DH-FBK团队提交给HaSpeeDe评估任务的系统,并处理意大利语仇恨言论检测(任务A)。虽然我们采用标准方法对AlBERTo进行微调,但我们建议通过两个额外的步骤来提高最终的分类性能,即自我训练和过采样。实际上,我们用额外的银数据扩展了初始训练数据,这些数据是从特定领域的推文中仔细采样的,并且在第一次训练我们的系统后仅使用任务训练数据获得。然后,我们通过合并银和任务训练数据来重新训练分类器,但对后者进行过采样,以便获得的模型对银数据中可能存在的不一致性更具鲁棒性。通过这种配置,我们获得tweet上的宏观平均F1为0.753,新闻标题上的宏观平均F1为0.702。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DH-FBK @ HaSpeeDe2: Italian Hate Speech Detection via Self-Training and Oversampling
We describe in this paper the system submitted by the DH-FBK team to the HaSpeeDe evaluation task, and dealing with Italian hate speech detection (Task A). While we adopt a standard approach for fine-tuning AlBERTo, the Italian BERT model trained on tweets, we propose to improve the final classification performance by two additional steps, i.e. self-training and oversampling. Indeed, we extend the initial training data with additional silver data, carefully sampled from domain-specific tweets and obtained after first training our system only with the task training data. Then, we retrain the classifier by merging silver and task training data but oversampling the latter, so that the obtained model is more robust to possible inconsistencies in the silver data. With this configuration, we obtain a macro-averaged F1 of 0.753 on tweets, and 0.702 on news headlines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信