从8-K报告预测公司重大事件

Shuang (Sophie) Zhai, Zhu Zhang
{"title":"从8-K报告预测公司重大事件","authors":"Shuang (Sophie) Zhai, Zhu Zhang","doi":"10.18653/v1/D19-5104","DOIUrl":null,"url":null,"abstract":"In this paper, we show deep learning models can be used to forecast firm material event sequences based on the contents in the company’s 8-K Current Reports. Specifically, we exploit state-of-the-art neural architectures, including sequence-to-sequence (Seq2Seq) architecture and attention mechanisms, in the model. Our 8K-powered deep learning model demonstrates promising performance in forecasting firm future event sequences. The model is poised to benefit various stakeholders, including management and investors, by facilitating risk management and decision making.","PeriodicalId":119881,"journal":{"name":"Proceedings of the Second Workshop on Economics and Natural Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Forecasting Firm Material Events from 8-K Reports\",\"authors\":\"Shuang (Sophie) Zhai, Zhu Zhang\",\"doi\":\"10.18653/v1/D19-5104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show deep learning models can be used to forecast firm material event sequences based on the contents in the company’s 8-K Current Reports. Specifically, we exploit state-of-the-art neural architectures, including sequence-to-sequence (Seq2Seq) architecture and attention mechanisms, in the model. Our 8K-powered deep learning model demonstrates promising performance in forecasting firm future event sequences. The model is poised to benefit various stakeholders, including management and investors, by facilitating risk management and decision making.\",\"PeriodicalId\":119881,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Economics and Natural Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Economics and Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-5104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Economics and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-5104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们展示了深度学习模型可用于基于公司8-K当前报告中的内容预测公司重大事件序列。具体来说,我们在模型中利用了最先进的神经架构,包括序列到序列(Seq2Seq)架构和注意力机制。我们的8k动力深度学习模型在预测公司未来事件序列方面表现出色。通过促进风险管理和决策,该模型将使包括管理层和投资者在内的各种利益相关者受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Firm Material Events from 8-K Reports
In this paper, we show deep learning models can be used to forecast firm material event sequences based on the contents in the company’s 8-K Current Reports. Specifically, we exploit state-of-the-art neural architectures, including sequence-to-sequence (Seq2Seq) architecture and attention mechanisms, in the model. Our 8K-powered deep learning model demonstrates promising performance in forecasting firm future event sequences. The model is poised to benefit various stakeholders, including management and investors, by facilitating risk management and decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信