广泛验证的实时时间导数滤波器的量化温度测量

Alexander Kozlov, I. Tarygin
{"title":"广泛验证的实时时间导数滤波器的量化温度测量","authors":"Alexander Kozlov, I. Tarygin","doi":"10.1109/SENSORS47125.2020.9278525","DOIUrl":null,"url":null,"abstract":"The paper aims to validate a recently developed real-time estimation technique for the temperature time derivative inside a navigation-grade inertial system. According to our experience, sensors that are responsible for measuring the temperature of gyroscopes and accelerometers, often have a sufficiently wide quantization step to make the estimation of time derivative a challenge. When temperature inside an inertial unit changes quite slowly, it may result in constant measurements over several minutes whilst real temperature being non-constant. In this case, measurement errors do not have white noise properties, hence preventing traditional estimation algorithms from being optimal. We propose a parametric model for a short-term temperature approximation and specific estimation algorithm to determine the model parameters. It embodies a numerically stable finite-impulse-response modification of a conventional Kalman filter applied only on temperature sensor updates. This paper provides a brief description of the algorithm and an exhaustive analysis of its performance over a hundred of experiments with different temperature variation patterns.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensive validation of a real-time time derivative filter for quantized temperature measurements\",\"authors\":\"Alexander Kozlov, I. Tarygin\",\"doi\":\"10.1109/SENSORS47125.2020.9278525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper aims to validate a recently developed real-time estimation technique for the temperature time derivative inside a navigation-grade inertial system. According to our experience, sensors that are responsible for measuring the temperature of gyroscopes and accelerometers, often have a sufficiently wide quantization step to make the estimation of time derivative a challenge. When temperature inside an inertial unit changes quite slowly, it may result in constant measurements over several minutes whilst real temperature being non-constant. In this case, measurement errors do not have white noise properties, hence preventing traditional estimation algorithms from being optimal. We propose a parametric model for a short-term temperature approximation and specific estimation algorithm to determine the model parameters. It embodies a numerically stable finite-impulse-response modification of a conventional Kalman filter applied only on temperature sensor updates. This paper provides a brief description of the algorithm and an exhaustive analysis of its performance over a hundred of experiments with different temperature variation patterns.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在验证最近开发的一种导航级惯性系统内部温度时间导数的实时估计技术。根据我们的经验,负责测量陀螺仪和加速度计温度的传感器通常具有足够宽的量化步骤,使时间导数的估计成为一项挑战。当惯性单元内部的温度变化相当缓慢时,可能会导致在几分钟内测量恒定,而实际温度是非恒定的。在这种情况下,测量误差不具有白噪声特性,从而使传统的估计算法无法达到最优。我们提出了一个用于短期温度近似的参数模型和确定模型参数的特定估计算法。它体现了一种数值稳定的有限脉冲响应修正的传统卡尔曼滤波器仅适用于温度传感器更新。本文简要介绍了该算法,并详尽分析了其在不同温度变化模式下的一百次实验中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensive validation of a real-time time derivative filter for quantized temperature measurements
The paper aims to validate a recently developed real-time estimation technique for the temperature time derivative inside a navigation-grade inertial system. According to our experience, sensors that are responsible for measuring the temperature of gyroscopes and accelerometers, often have a sufficiently wide quantization step to make the estimation of time derivative a challenge. When temperature inside an inertial unit changes quite slowly, it may result in constant measurements over several minutes whilst real temperature being non-constant. In this case, measurement errors do not have white noise properties, hence preventing traditional estimation algorithms from being optimal. We propose a parametric model for a short-term temperature approximation and specific estimation algorithm to determine the model parameters. It embodies a numerically stable finite-impulse-response modification of a conventional Kalman filter applied only on temperature sensor updates. This paper provides a brief description of the algorithm and an exhaustive analysis of its performance over a hundred of experiments with different temperature variation patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信