{"title":"利用结构指标改进聚类评价","authors":"Mark Shtern, Vassilios Tzerpos","doi":"10.1109/ICSM.2009.5306306","DOIUrl":null,"url":null,"abstract":"The evaluation of the effectiveness of software clustering algorithms is a challenging research question. Several approaches that compare clustering results to an authoritative decomposition have been presented in the literature. Existing evaluation methods typically compress the evaluation results into a single number. They also often disagree with each other for reasons that are not well understood. In this paper, we introduce a novel set of indicators that evaluate structural discrepancies between software decompositions. They also allow researchers to investigate the differences between existing evaluation approaches in a reduced search space. Several experiments with real software systems showcase the usefulness of the introduced indicators.","PeriodicalId":247441,"journal":{"name":"2009 IEEE International Conference on Software Maintenance","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Refining clustering evaluation using structure indicators\",\"authors\":\"Mark Shtern, Vassilios Tzerpos\",\"doi\":\"10.1109/ICSM.2009.5306306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of the effectiveness of software clustering algorithms is a challenging research question. Several approaches that compare clustering results to an authoritative decomposition have been presented in the literature. Existing evaluation methods typically compress the evaluation results into a single number. They also often disagree with each other for reasons that are not well understood. In this paper, we introduce a novel set of indicators that evaluate structural discrepancies between software decompositions. They also allow researchers to investigate the differences between existing evaluation approaches in a reduced search space. Several experiments with real software systems showcase the usefulness of the introduced indicators.\",\"PeriodicalId\":247441,\"journal\":{\"name\":\"2009 IEEE International Conference on Software Maintenance\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Software Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSM.2009.5306306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Software Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSM.2009.5306306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Refining clustering evaluation using structure indicators
The evaluation of the effectiveness of software clustering algorithms is a challenging research question. Several approaches that compare clustering results to an authoritative decomposition have been presented in the literature. Existing evaluation methods typically compress the evaluation results into a single number. They also often disagree with each other for reasons that are not well understood. In this paper, we introduce a novel set of indicators that evaluate structural discrepancies between software decompositions. They also allow researchers to investigate the differences between existing evaluation approaches in a reduced search space. Several experiments with real software systems showcase the usefulness of the introduced indicators.