Dilara Acarali, M. Rajarajan, D. Chema, M. Ginzburg
{"title":"智能电网中的DoS攻击建模与互操作性","authors":"Dilara Acarali, M. Rajarajan, D. Chema, M. Ginzburg","doi":"10.1109/ICCCN49398.2020.9209671","DOIUrl":null,"url":null,"abstract":"Smart grids perform the crucial role of delivering electricity to millions of people and driving today’s industries. However, the integration of physical operational technology (OT) with IT systems introduces many security challenges. Denial-of-Service (DoS) is a well-known IT attack with a large potential for damage within the smart grid. Whilst DoS is relatively well-understood in IT networks, the unique characteristics and requirements of smart grids bring up new challenges. In this paper, we examine this relationship and propose the OT impact chain to capture possible sequences of events resulting from an IT-side DoS attack. We then apply epidemic principles to explore the same dynamics using the proposed S-A-C model.","PeriodicalId":137835,"journal":{"name":"2020 29th International Conference on Computer Communications and Networks (ICCCN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modelling DoS Attacks & Interoperability in the Smart Grid\",\"authors\":\"Dilara Acarali, M. Rajarajan, D. Chema, M. Ginzburg\",\"doi\":\"10.1109/ICCCN49398.2020.9209671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart grids perform the crucial role of delivering electricity to millions of people and driving today’s industries. However, the integration of physical operational technology (OT) with IT systems introduces many security challenges. Denial-of-Service (DoS) is a well-known IT attack with a large potential for damage within the smart grid. Whilst DoS is relatively well-understood in IT networks, the unique characteristics and requirements of smart grids bring up new challenges. In this paper, we examine this relationship and propose the OT impact chain to capture possible sequences of events resulting from an IT-side DoS attack. We then apply epidemic principles to explore the same dynamics using the proposed S-A-C model.\",\"PeriodicalId\":137835,\"journal\":{\"name\":\"2020 29th International Conference on Computer Communications and Networks (ICCCN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th International Conference on Computer Communications and Networks (ICCCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN49398.2020.9209671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th International Conference on Computer Communications and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN49398.2020.9209671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling DoS Attacks & Interoperability in the Smart Grid
Smart grids perform the crucial role of delivering electricity to millions of people and driving today’s industries. However, the integration of physical operational technology (OT) with IT systems introduces many security challenges. Denial-of-Service (DoS) is a well-known IT attack with a large potential for damage within the smart grid. Whilst DoS is relatively well-understood in IT networks, the unique characteristics and requirements of smart grids bring up new challenges. In this paper, we examine this relationship and propose the OT impact chain to capture possible sequences of events resulting from an IT-side DoS attack. We then apply epidemic principles to explore the same dynamics using the proposed S-A-C model.