{"title":"基于复合模型的短期交通量预测方法综述","authors":"Wenjing Zhang, Dehong Kong, Xingmin Zou, Fengya Xu, Qingqing Yang, Chao-Hsien Hsieh","doi":"10.1145/3603781.3603788","DOIUrl":null,"url":null,"abstract":"Traditional traffic prediction methods cannot effectively use many traffic data. Deep learning can mine the information behind big data. For example, recurrent neural network can effectively extract time rules. Convolution neural network can extract spatial features. And, graph convolution neural network is convenient for graph data processing, but it still has its limitations. At present, the hybrid method highlights its advantages in the field of transportation and realizes the complementary advantages of traditional methods and deep learning methods. On this basis, this paper summarizes the short-term traffic volume forecasting methods.","PeriodicalId":391180,"journal":{"name":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Short-Term Traffic Volume Prediction Methods Based on Composite Models\",\"authors\":\"Wenjing Zhang, Dehong Kong, Xingmin Zou, Fengya Xu, Qingqing Yang, Chao-Hsien Hsieh\",\"doi\":\"10.1145/3603781.3603788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional traffic prediction methods cannot effectively use many traffic data. Deep learning can mine the information behind big data. For example, recurrent neural network can effectively extract time rules. Convolution neural network can extract spatial features. And, graph convolution neural network is convenient for graph data processing, but it still has its limitations. At present, the hybrid method highlights its advantages in the field of transportation and realizes the complementary advantages of traditional methods and deep learning methods. On this basis, this paper summarizes the short-term traffic volume forecasting methods.\",\"PeriodicalId\":391180,\"journal\":{\"name\":\"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603781.3603788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603781.3603788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Survey of Short-Term Traffic Volume Prediction Methods Based on Composite Models
Traditional traffic prediction methods cannot effectively use many traffic data. Deep learning can mine the information behind big data. For example, recurrent neural network can effectively extract time rules. Convolution neural network can extract spatial features. And, graph convolution neural network is convenient for graph data processing, but it still has its limitations. At present, the hybrid method highlights its advantages in the field of transportation and realizes the complementary advantages of traditional methods and deep learning methods. On this basis, this paper summarizes the short-term traffic volume forecasting methods.