利用符号核费雪判别法提出了一种新的提取非线性区间型特征的核函数,并应用于人脸识别

P. Hiremath, C. J. Prabhakar
{"title":"利用符号核费雪判别法提出了一种新的提取非线性区间型特征的核函数,并应用于人脸识别","authors":"P. Hiremath, C. J. Prabhakar","doi":"10.1109/ISBAST.2008.4547652","DOIUrl":null,"url":null,"abstract":"In this paper we propose to use a new RBF kernel function to extract non linear interval type features using symbolic kernel Fisher discriminant analysis (symbolic KFD) for face recognition. The kernel based methods are a powerful paradigm; they are not favorable to deal with the challenge of large datasets of faces. We propose to scale up training task based on the interval data concept. Our investigation aims at extending kernel Fisher discriminant analysis (KFD) to interval data using new RBF kernel function. We adapt the symbolic KFD to extract interval type non linear discriminating features, which are robust due to varying facial expression, view point and illumination. In the classification phase, we employed Euclidean distance with minimum distance classifier. The new algorithm has been successfully tested using three databases, namely, ORL database, Yale Face database and Yale Face database B. The experimental results show that symbolic KFD with new RBF kernel function outperforms other discriminant analysis based algorithms.","PeriodicalId":443027,"journal":{"name":"2008 International Symposium on Biometrics and Security Technologies","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new kernel function to extract non linear interval type features using symbolic kernel Fisher discriminant method with application to face recognition\",\"authors\":\"P. Hiremath, C. J. Prabhakar\",\"doi\":\"10.1109/ISBAST.2008.4547652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose to use a new RBF kernel function to extract non linear interval type features using symbolic kernel Fisher discriminant analysis (symbolic KFD) for face recognition. The kernel based methods are a powerful paradigm; they are not favorable to deal with the challenge of large datasets of faces. We propose to scale up training task based on the interval data concept. Our investigation aims at extending kernel Fisher discriminant analysis (KFD) to interval data using new RBF kernel function. We adapt the symbolic KFD to extract interval type non linear discriminating features, which are robust due to varying facial expression, view point and illumination. In the classification phase, we employed Euclidean distance with minimum distance classifier. The new algorithm has been successfully tested using three databases, namely, ORL database, Yale Face database and Yale Face database B. The experimental results show that symbolic KFD with new RBF kernel function outperforms other discriminant analysis based algorithms.\",\"PeriodicalId\":443027,\"journal\":{\"name\":\"2008 International Symposium on Biometrics and Security Technologies\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Biometrics and Security Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBAST.2008.4547652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Biometrics and Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2008.4547652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的RBF核函数,利用符号核Fisher判别分析(symbolic KFD)提取非线性区间型特征,用于人脸识别。基于内核的方法是一个强大的范例;它们不利于处理大型人脸数据集的挑战。我们提出了基于区间数据概念的训练任务规模化。我们的研究目的是利用新的RBF核函数将核Fisher判别分析扩展到区间数据。我们采用符号KFD来提取区间型非线性判别特征,该特征由于面部表情、视角和光照的变化而具有鲁棒性。在分类阶段,我们采用欧氏距离最小距离分类器。新算法在ORL数据库、Yale Face数据库和Yale Face数据库b中进行了成功的测试。实验结果表明,基于新RBF核函数的符号KFD优于其他基于判别分析的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new kernel function to extract non linear interval type features using symbolic kernel Fisher discriminant method with application to face recognition
In this paper we propose to use a new RBF kernel function to extract non linear interval type features using symbolic kernel Fisher discriminant analysis (symbolic KFD) for face recognition. The kernel based methods are a powerful paradigm; they are not favorable to deal with the challenge of large datasets of faces. We propose to scale up training task based on the interval data concept. Our investigation aims at extending kernel Fisher discriminant analysis (KFD) to interval data using new RBF kernel function. We adapt the symbolic KFD to extract interval type non linear discriminating features, which are robust due to varying facial expression, view point and illumination. In the classification phase, we employed Euclidean distance with minimum distance classifier. The new algorithm has been successfully tested using three databases, namely, ORL database, Yale Face database and Yale Face database B. The experimental results show that symbolic KFD with new RBF kernel function outperforms other discriminant analysis based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信