社交网络中的新型推荐系统

M. Talukder, Md. Moshiur Rahman, S. Halder, Md. Jamal Uddin
{"title":"社交网络中的新型推荐系统","authors":"M. Talukder, Md. Moshiur Rahman, S. Halder, Md. Jamal Uddin","doi":"10.1109/ICIVPR.2017.7890864","DOIUrl":null,"url":null,"abstract":"Absence of the user based recommendation system is a prevalent problem in a social network. In this paper, our work tends to model distance based group and probability based group in terms deciding recommendation dynamics. Here, we want to identify the best user who appears to be the innocent audience. In this regard, the effect of network density and preference homogeneity according to the user have been calculated. We have also used the probability function to evaluate the group of user that could be recommended.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel recommendation systems in social networks\",\"authors\":\"M. Talukder, Md. Moshiur Rahman, S. Halder, Md. Jamal Uddin\",\"doi\":\"10.1109/ICIVPR.2017.7890864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Absence of the user based recommendation system is a prevalent problem in a social network. In this paper, our work tends to model distance based group and probability based group in terms deciding recommendation dynamics. Here, we want to identify the best user who appears to be the innocent audience. In this regard, the effect of network density and preference homogeneity according to the user have been calculated. We have also used the probability function to evaluate the group of user that could be recommended.\",\"PeriodicalId\":126745,\"journal\":{\"name\":\"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVPR.2017.7890864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

缺乏基于用户的推荐系统是社交网络中普遍存在的问题。在本文中,我们的工作倾向于在决定推荐动态方面建立基于距离的组和基于概率的组的模型。在这里,我们想要确定那些看起来是无辜观众的最佳用户。为此,计算了网络密度和用户偏好同质性的影响。我们还使用概率函数来评估可以推荐的用户组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel recommendation systems in social networks
Absence of the user based recommendation system is a prevalent problem in a social network. In this paper, our work tends to model distance based group and probability based group in terms deciding recommendation dynamics. Here, we want to identify the best user who appears to be the innocent audience. In this regard, the effect of network density and preference homogeneity according to the user have been calculated. We have also used the probability function to evaluate the group of user that could be recommended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信