{"title":"p进数上的概率枚举几何:完全交点上的线性空间","authors":"Rida Ait El Manssour, A. Lerário","doi":"10.5802/ahl.153","DOIUrl":null,"url":null,"abstract":"We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here \"random\" means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Probabilistic enumerative geometry over p-adic numbers: linear spaces on complete intersections\",\"authors\":\"Rida Ait El Manssour, A. Lerário\",\"doi\":\"10.5802/ahl.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here \\\"random\\\" means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic enumerative geometry over p-adic numbers: linear spaces on complete intersections
We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here "random" means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.