用天真的贝斯方法分析Twitter上对这一领域的评论

Rizky Kurnia Pratama, Putry Wahyu Setyaningsih
{"title":"用天真的贝斯方法分析Twitter上对这一领域的评论","authors":"Rizky Kurnia Pratama, Putry Wahyu Setyaningsih","doi":"10.26486/jisai.v3i2.129","DOIUrl":null,"url":null,"abstract":"Pandemi covid telah memberikan dampak bagi perekonomian suatu negara, terutama Indonesia. Dampak yang terkena imbas pada sektor ekonomi yaitu sektor lapangan kerja. Isu mengenai lapangan kerja pada twitter mulai muncul ketika pada tahun 2020 bulan Desember lalu saat corona mulai masuk ke Indonesia sehingga gelombang PHK banyak terjadi. Masyarakat Indonesia lantas menggunakan media kanal yaitu twitter untuk berkomentar tentang kondisi mereka. Twitter adalah salah satu media kanal internet yang diciptakan untuk jejaring sosial dan sarana ekspresi diri sehingga pengguna yang menggunakan twitter akan mendapat kepuasan tersendiri. Penelitian ini mencoba memberikan perspektif  suatu analisis komentar pada twitter terkait lapangan kerja di masa pandemi covid-19. Analisis dilakukan dengan menggunakan aplikasi Orange, proses yang dilakukan melalui tahapan preprocessing, transformation, filtering, tokenizing, dan normalization. Tahapan selanjutnya yaitu pelabelan otomatis dengan metode Vader, klasifikasi dengan metode naive bayes dan pembobotan dengan metode TF-IDF serta kalkulasi dari aplikasi orange data mining yang representasikan dengan hasil extented confusion matrix. Data yang penulis analisis menurut aplikasi orange sebanyak 3929 data tweet dari tanggal 22-30 Agustus 2021 dengan memanfaatkan Web Crawling API Twitter. Hasil penelitian dari aplikasi orange data mining memperlihatkan  akurasi dengan Naive Bayes mendekati angka sempuna yaitu 99% dengan jumlah sentimen di masyarakat sebanyak 25% positif, 11% negatif dan 64% netral.","PeriodicalId":431246,"journal":{"name":"Journal Of Information System And Artificial Intelligence","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Komentar Pada Twitter Terhadap Lapangan Kerja Dengan Metode Naïve Bayes\",\"authors\":\"Rizky Kurnia Pratama, Putry Wahyu Setyaningsih\",\"doi\":\"10.26486/jisai.v3i2.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pandemi covid telah memberikan dampak bagi perekonomian suatu negara, terutama Indonesia. Dampak yang terkena imbas pada sektor ekonomi yaitu sektor lapangan kerja. Isu mengenai lapangan kerja pada twitter mulai muncul ketika pada tahun 2020 bulan Desember lalu saat corona mulai masuk ke Indonesia sehingga gelombang PHK banyak terjadi. Masyarakat Indonesia lantas menggunakan media kanal yaitu twitter untuk berkomentar tentang kondisi mereka. Twitter adalah salah satu media kanal internet yang diciptakan untuk jejaring sosial dan sarana ekspresi diri sehingga pengguna yang menggunakan twitter akan mendapat kepuasan tersendiri. Penelitian ini mencoba memberikan perspektif  suatu analisis komentar pada twitter terkait lapangan kerja di masa pandemi covid-19. Analisis dilakukan dengan menggunakan aplikasi Orange, proses yang dilakukan melalui tahapan preprocessing, transformation, filtering, tokenizing, dan normalization. Tahapan selanjutnya yaitu pelabelan otomatis dengan metode Vader, klasifikasi dengan metode naive bayes dan pembobotan dengan metode TF-IDF serta kalkulasi dari aplikasi orange data mining yang representasikan dengan hasil extented confusion matrix. Data yang penulis analisis menurut aplikasi orange sebanyak 3929 data tweet dari tanggal 22-30 Agustus 2021 dengan memanfaatkan Web Crawling API Twitter. Hasil penelitian dari aplikasi orange data mining memperlihatkan  akurasi dengan Naive Bayes mendekati angka sempuna yaitu 99% dengan jumlah sentimen di masyarakat sebanyak 25% positif, 11% negatif dan 64% netral.\",\"PeriodicalId\":431246,\"journal\":{\"name\":\"Journal Of Information System And Artificial Intelligence\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal Of Information System And Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26486/jisai.v3i2.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Information System And Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26486/jisai.v3i2.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

covid大流行已经对一个国家的经济,特别是印度尼西亚产生了影响。影响经济部门的影响,也就是就业部门。去年12月,当科罗娜进入印尼时,twitter上的就业问题开始出现,导致大量裁员。印尼人随后使用twitter上的运河媒体来评论他们的情况。Twitter是为社交网络和自我表达方式创建的社交媒体之一,允许使用Twitter的用户从中获得一定程度的满足。本研究试图为covid-19大流行的twitter相关就业分析提供观点。分析使用橙色应用程序进行,这一过程是通过预先处理、变形、过滤、过滤和正常进行的。下一阶段是自动标签根据orange app分析,从2021年8月22日至30日起,通过网络跟踪Twitter的最新消息,目前的数据为3929条。《橘色数据挖掘应用》(orange data mining app)的研究结果显示,“网络贝斯”追求的目标是“99%”,“社会情绪总量为25%、11%是负的、64%”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Komentar Pada Twitter Terhadap Lapangan Kerja Dengan Metode Naïve Bayes
Pandemi covid telah memberikan dampak bagi perekonomian suatu negara, terutama Indonesia. Dampak yang terkena imbas pada sektor ekonomi yaitu sektor lapangan kerja. Isu mengenai lapangan kerja pada twitter mulai muncul ketika pada tahun 2020 bulan Desember lalu saat corona mulai masuk ke Indonesia sehingga gelombang PHK banyak terjadi. Masyarakat Indonesia lantas menggunakan media kanal yaitu twitter untuk berkomentar tentang kondisi mereka. Twitter adalah salah satu media kanal internet yang diciptakan untuk jejaring sosial dan sarana ekspresi diri sehingga pengguna yang menggunakan twitter akan mendapat kepuasan tersendiri. Penelitian ini mencoba memberikan perspektif  suatu analisis komentar pada twitter terkait lapangan kerja di masa pandemi covid-19. Analisis dilakukan dengan menggunakan aplikasi Orange, proses yang dilakukan melalui tahapan preprocessing, transformation, filtering, tokenizing, dan normalization. Tahapan selanjutnya yaitu pelabelan otomatis dengan metode Vader, klasifikasi dengan metode naive bayes dan pembobotan dengan metode TF-IDF serta kalkulasi dari aplikasi orange data mining yang representasikan dengan hasil extented confusion matrix. Data yang penulis analisis menurut aplikasi orange sebanyak 3929 data tweet dari tanggal 22-30 Agustus 2021 dengan memanfaatkan Web Crawling API Twitter. Hasil penelitian dari aplikasi orange data mining memperlihatkan  akurasi dengan Naive Bayes mendekati angka sempuna yaitu 99% dengan jumlah sentimen di masyarakat sebanyak 25% positif, 11% negatif dan 64% netral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信