{"title":"一些四维线性群的不变量域的合理性,以及与分段三次相关的等变构造","authors":"I. Y. Kolpakov-Miroshnichenko, Yuri Prokhorov","doi":"10.1070/SM1993V074N01ABEH003342","DOIUrl":null,"url":null,"abstract":"Let be a finite primitive linear group. We prove that if contains a normal subgroup of order 32 then the quotient variety is birationally isomorphic to , where is the Segre cubic. We also prove the rationality of for a large class of such groups (in particular, solvable groups).","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"RATIONALITY OF FIELDS OF INVARIANTS OF SOME FOUR-DIMENSIONAL LINEAR GROUPS, AND AN EQUIVARIANT CONSTRUCTION RELATED TO THE SEGRE CUBIC\",\"authors\":\"I. Y. Kolpakov-Miroshnichenko, Yuri Prokhorov\",\"doi\":\"10.1070/SM1993V074N01ABEH003342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a finite primitive linear group. We prove that if contains a normal subgroup of order 32 then the quotient variety is birationally isomorphic to , where is the Segre cubic. We also prove the rationality of for a large class of such groups (in particular, solvable groups).\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1993V074N01ABEH003342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1993V074N01ABEH003342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RATIONALITY OF FIELDS OF INVARIANTS OF SOME FOUR-DIMENSIONAL LINEAR GROUPS, AND AN EQUIVARIANT CONSTRUCTION RELATED TO THE SEGRE CUBIC
Let be a finite primitive linear group. We prove that if contains a normal subgroup of order 32 then the quotient variety is birationally isomorphic to , where is the Segre cubic. We also prove the rationality of for a large class of such groups (in particular, solvable groups).