一些四维线性群的不变量域的合理性,以及与分段三次相关的等变构造

I. Y. Kolpakov-Miroshnichenko, Yuri Prokhorov
{"title":"一些四维线性群的不变量域的合理性,以及与分段三次相关的等变构造","authors":"I. Y. Kolpakov-Miroshnichenko, Yuri Prokhorov","doi":"10.1070/SM1993V074N01ABEH003342","DOIUrl":null,"url":null,"abstract":"Let be a finite primitive linear group. We prove that if contains a normal subgroup of order 32 then the quotient variety is birationally isomorphic to , where is the Segre cubic. We also prove the rationality of for a large class of such groups (in particular, solvable groups).","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"RATIONALITY OF FIELDS OF INVARIANTS OF SOME FOUR-DIMENSIONAL LINEAR GROUPS, AND AN EQUIVARIANT CONSTRUCTION RELATED TO THE SEGRE CUBIC\",\"authors\":\"I. Y. Kolpakov-Miroshnichenko, Yuri Prokhorov\",\"doi\":\"10.1070/SM1993V074N01ABEH003342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a finite primitive linear group. We prove that if contains a normal subgroup of order 32 then the quotient variety is birationally isomorphic to , where is the Segre cubic. We also prove the rationality of for a large class of such groups (in particular, solvable groups).\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1993V074N01ABEH003342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1993V074N01ABEH003342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

设一个有限原始线性群。证明了如果包含一个32阶的正规子群,则商簇是双同构的,其中为Segre三次。我们还证明了这类群(特别是可解群)的一大类的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RATIONALITY OF FIELDS OF INVARIANTS OF SOME FOUR-DIMENSIONAL LINEAR GROUPS, AND AN EQUIVARIANT CONSTRUCTION RELATED TO THE SEGRE CUBIC
Let be a finite primitive linear group. We prove that if contains a normal subgroup of order 32 then the quotient variety is birationally isomorphic to , where is the Segre cubic. We also prove the rationality of for a large class of such groups (in particular, solvable groups).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信