合成生物学:控制工程的观点

Thomas P. Prescott, A. Papachristodoulou
{"title":"合成生物学:控制工程的观点","authors":"Thomas P. Prescott, A. Papachristodoulou","doi":"10.1109/ECC.2014.6862638","DOIUrl":null,"url":null,"abstract":"Synthetic Biology is a new, rapidly developing field at the interface of Engineering and Biology. It aims to design new, or redesign existing biological systems for a particular purpose. The early years have seen the design of simple devices and parts (such as switches and oscillators); Synthetic Biology is now entering a new phase of development as the successfully designed devices of recent years are exploited to create systems of increasing sophistication. Control theoretic techniques play an important part in the design of these networks, as well as for allowing increasing levels of complexity to be engineered into synthetic biological systems. At the same time, the implementation of feedback control in these networks will allow them to sense, process and actuate on environmental and internal cues.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Synthetic biology: A control engineering perspective\",\"authors\":\"Thomas P. Prescott, A. Papachristodoulou\",\"doi\":\"10.1109/ECC.2014.6862638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Biology is a new, rapidly developing field at the interface of Engineering and Biology. It aims to design new, or redesign existing biological systems for a particular purpose. The early years have seen the design of simple devices and parts (such as switches and oscillators); Synthetic Biology is now entering a new phase of development as the successfully designed devices of recent years are exploited to create systems of increasing sophistication. Control theoretic techniques play an important part in the design of these networks, as well as for allowing increasing levels of complexity to be engineered into synthetic biological systems. At the same time, the implementation of feedback control in these networks will allow them to sense, process and actuate on environmental and internal cues.\",\"PeriodicalId\":251538,\"journal\":{\"name\":\"2014 European Control Conference (ECC)\",\"volume\":\"12 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECC.2014.6862638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

合成生物学是工程与生物学交叉发展起来的一门新兴学科。它旨在为特定目的设计新的或重新设计现有的生物系统。早期设计了简单的设备和部件(如开关和振荡器);合成生物学现在正进入一个新的发展阶段,近年来成功设计的设备被用来创造越来越复杂的系统。控制理论技术在这些网络的设计中起着重要的作用,同时也允许在合成生物系统中增加复杂程度。同时,在这些网络中实施反馈控制将使它们能够感知、处理和驱动环境和内部线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic biology: A control engineering perspective
Synthetic Biology is a new, rapidly developing field at the interface of Engineering and Biology. It aims to design new, or redesign existing biological systems for a particular purpose. The early years have seen the design of simple devices and parts (such as switches and oscillators); Synthetic Biology is now entering a new phase of development as the successfully designed devices of recent years are exploited to create systems of increasing sophistication. Control theoretic techniques play an important part in the design of these networks, as well as for allowing increasing levels of complexity to be engineered into synthetic biological systems. At the same time, the implementation of feedback control in these networks will allow them to sense, process and actuate on environmental and internal cues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信