无环边二部图的Coxeter型分类及矩阵模化

Rafal Bocian, Mariusz Felisiak, D. Simson
{"title":"无环边二部图的Coxeter型分类及矩阵模化","authors":"Rafal Bocian, Mariusz Felisiak, D. Simson","doi":"10.1109/SYNASC.2013.22","DOIUrl":null,"url":null,"abstract":"We continue and complete a Coxeter spectral study (presented in our talk given in SYNASC11 and SYNASC12) of the root systems in the sense of Bourbaki, the mesh geometries Γ(R<sub>Δ</sub>, Φ<sub>A</sub>) of roots of Δ in the sense of [J. Pure Appl. Algebra, 215 (2010), 13-34], and matrix morsifications A ∈ Mor<sub>Δ</sub>, for simply laced Dynkin diagrams Δ ∈ {A<sub>n</sub>, D<sub>n</sub>, E<sub>6</sub>, E<sub>7</sub>, E<sub>8</sub>}. Here we report on algorithmic and morsification technique for the Coxeter spectral analysis of connected loop-free edge-bipartite graphs Δ with n ≥ 2 vertices by means of the Coxeter matrix Cox<sub>Δ</sub> ∈ M<sub>n</sub>(Z), the Coxeter spectrum specc<sub>Δ</sub>, and an inflation algorithm associating to any connected loop-free positive bigraph Δ a simply laced Dynkin diagram DΔ, and defining a Z-congruence of the symmetric Gram matrices G<sub>Δ</sub> and G<sub>DΔ</sub>. We also present a computer aided technique that allows us to construct a Z-congruence of the non-symmetric Gram matrices Ğ<sub>Δ</sub> and Ğ<sub>Δ'</sub>, if the Coxeter spectra specc<sub>Δ</sub> and specc<sub>Δ'</sub> coincide. A complete Coxeter spectral classification of positive edge-bipartite graphs Δ of Coxeter-Dynkin types DΔ ∈ {A<sub>n</sub>, D<sub>n</sub>, E<sub>6</sub>, E<sub>7</sub>}, with n ≤ 7, is obtained by a reduction to computer calculation of Gl(n, Z)<sub>DΔ</sub>-orbits in the set Mor<sub>DΔ</sub>, where Gl(n, Z)<sub>DΔ</sub> is the isotropy group of the Dynkin diagram DΔ.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"40 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On Coxeter Type Classification of Loop-Free Edge-Bipartite Graphs and Matrix Morsifications\",\"authors\":\"Rafal Bocian, Mariusz Felisiak, D. Simson\",\"doi\":\"10.1109/SYNASC.2013.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue and complete a Coxeter spectral study (presented in our talk given in SYNASC11 and SYNASC12) of the root systems in the sense of Bourbaki, the mesh geometries Γ(R<sub>Δ</sub>, Φ<sub>A</sub>) of roots of Δ in the sense of [J. Pure Appl. Algebra, 215 (2010), 13-34], and matrix morsifications A ∈ Mor<sub>Δ</sub>, for simply laced Dynkin diagrams Δ ∈ {A<sub>n</sub>, D<sub>n</sub>, E<sub>6</sub>, E<sub>7</sub>, E<sub>8</sub>}. Here we report on algorithmic and morsification technique for the Coxeter spectral analysis of connected loop-free edge-bipartite graphs Δ with n ≥ 2 vertices by means of the Coxeter matrix Cox<sub>Δ</sub> ∈ M<sub>n</sub>(Z), the Coxeter spectrum specc<sub>Δ</sub>, and an inflation algorithm associating to any connected loop-free positive bigraph Δ a simply laced Dynkin diagram DΔ, and defining a Z-congruence of the symmetric Gram matrices G<sub>Δ</sub> and G<sub>DΔ</sub>. We also present a computer aided technique that allows us to construct a Z-congruence of the non-symmetric Gram matrices Ğ<sub>Δ</sub> and Ğ<sub>Δ'</sub>, if the Coxeter spectra specc<sub>Δ</sub> and specc<sub>Δ'</sub> coincide. A complete Coxeter spectral classification of positive edge-bipartite graphs Δ of Coxeter-Dynkin types DΔ ∈ {A<sub>n</sub>, D<sub>n</sub>, E<sub>6</sub>, E<sub>7</sub>}, with n ≤ 7, is obtained by a reduction to computer calculation of Gl(n, Z)<sub>DΔ</sub>-orbits in the set Mor<sub>DΔ</sub>, where Gl(n, Z)<sub>DΔ</sub> is the isotropy group of the Dynkin diagram DΔ.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"40 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们继续并完成了布尔巴基意义下根系的考克斯特谱研究(在SYNASC11和SYNASC12的演讲中提出),以及Δ意义下根系的网格几何Γ(RΔ, ΦA) [J]。纯粹的达成。代数,215(2010),13-34],和矩阵模化A∈MorΔ,对于简单系Dynkin图Δ∈{An, Dn, E6, E7, E8}。本文利用Coxeter矩阵CoxΔ∈Mn(Z)、Coxeter谱speccΔ和一种与任意连通的无环正图Δ(简带Dynkin图DΔ)相关联的膨胀算法,并定义对称Gram矩阵GΔ和GDΔ的Z同余,研究了n≥2个顶点的连通无环边二部图Δ的Coxeter谱分析的算法和摩尔化技术。我们还提出了一种计算机辅助技术,该技术允许我们构建非对称Gram矩阵ĞΔ和ĞΔ'的z同余,如果Coxeter谱speccΔ和speccΔ'重合。通过对集合MorDΔ中Gl(n, Z)DΔ-orbits的计算机计算约简,得到Coxeter-Dynkin型(DΔ∈{An, Dn, E6, E7})的正边二部图Δ的完整Coxeter谱分类,其中Gl(n, Z)DΔ为Dynkin图DΔ的各向同性群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Coxeter Type Classification of Loop-Free Edge-Bipartite Graphs and Matrix Morsifications
We continue and complete a Coxeter spectral study (presented in our talk given in SYNASC11 and SYNASC12) of the root systems in the sense of Bourbaki, the mesh geometries Γ(RΔ, ΦA) of roots of Δ in the sense of [J. Pure Appl. Algebra, 215 (2010), 13-34], and matrix morsifications A ∈ MorΔ, for simply laced Dynkin diagrams Δ ∈ {An, Dn, E6, E7, E8}. Here we report on algorithmic and morsification technique for the Coxeter spectral analysis of connected loop-free edge-bipartite graphs Δ with n ≥ 2 vertices by means of the Coxeter matrix CoxΔ ∈ Mn(Z), the Coxeter spectrum speccΔ, and an inflation algorithm associating to any connected loop-free positive bigraph Δ a simply laced Dynkin diagram DΔ, and defining a Z-congruence of the symmetric Gram matrices GΔ and G. We also present a computer aided technique that allows us to construct a Z-congruence of the non-symmetric Gram matrices ĞΔ and ĞΔ', if the Coxeter spectra speccΔ and speccΔ' coincide. A complete Coxeter spectral classification of positive edge-bipartite graphs Δ of Coxeter-Dynkin types DΔ ∈ {An, Dn, E6, E7}, with n ≤ 7, is obtained by a reduction to computer calculation of Gl(n, Z)-orbits in the set Mor, where Gl(n, Z) is the isotropy group of the Dynkin diagram DΔ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信