为什么“协变”李雅普诺夫指数的瞬时值取决于所选择的状态空间尺度

W. Hoover, C. G. Hoover
{"title":"为什么“协变”李雅普诺夫指数的瞬时值取决于所选择的状态空间尺度","authors":"W. Hoover, C. G. Hoover","doi":"10.12921/CMST.2014.20.01.5-8","DOIUrl":null,"url":null,"abstract":"We explore a simple example of a chaotic thermostated harmonic-oscillator system which exhibits qualitatively different local Lyapunov exponents for simple scale-model constant-volume transformations of its coordinate q and momentum p : { q,p } --> { (Q/s),(sP) } . The time-dependent thermostat variable zeta(t) is unchanged by such scaling. The original (q,p,zeta) motion and the scale-model (Q,P,zeta) version of the motion are physically identical. But both the local Gram-Schmidt Lyapunov exponents and the related local \"covariant\" exponents change with the change of scale. Thus this model furnishes a clearcut chaotic time-reversible example showing how and why both the local Lyapunov exponents and covariant exponents vary with the scale factor s .","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Why Instantaneous Values of the \\\"Covariant\\\" Lyapunov Exponents Depend upon the Chosen State-Space Scale\",\"authors\":\"W. Hoover, C. G. Hoover\",\"doi\":\"10.12921/CMST.2014.20.01.5-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore a simple example of a chaotic thermostated harmonic-oscillator system which exhibits qualitatively different local Lyapunov exponents for simple scale-model constant-volume transformations of its coordinate q and momentum p : { q,p } --> { (Q/s),(sP) } . The time-dependent thermostat variable zeta(t) is unchanged by such scaling. The original (q,p,zeta) motion and the scale-model (Q,P,zeta) version of the motion are physically identical. But both the local Gram-Schmidt Lyapunov exponents and the related local \\\"covariant\\\" exponents change with the change of scale. Thus this model furnishes a clearcut chaotic time-reversible example showing how and why both the local Lyapunov exponents and covariant exponents vary with the scale factor s .\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/CMST.2014.20.01.5-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2014.20.01.5-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们探索了一个简单的混沌热稳态谐振系统的例子,该系统的坐标q和动量p的简单比例模型常体积变换显示出定性不同的局部Lyapunov指数:{q,p} -> {(q /s),(sP)}。与时间相关的恒温器变量zeta(t)在这种缩放下是不变的。原始(q,p,zeta)运动和运动的比例模型(q,p,zeta)版本在物理上是相同的。但局部Gram-Schmidt Lyapunov指数和相关的局部“协变”指数都随着尺度的变化而变化。因此,该模型提供了一个清晰的混沌时间可逆的例子,显示了局部李雅普诺夫指数和协变指数如何以及为什么随比例因子s而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why Instantaneous Values of the "Covariant" Lyapunov Exponents Depend upon the Chosen State-Space Scale
We explore a simple example of a chaotic thermostated harmonic-oscillator system which exhibits qualitatively different local Lyapunov exponents for simple scale-model constant-volume transformations of its coordinate q and momentum p : { q,p } --> { (Q/s),(sP) } . The time-dependent thermostat variable zeta(t) is unchanged by such scaling. The original (q,p,zeta) motion and the scale-model (Q,P,zeta) version of the motion are physically identical. But both the local Gram-Schmidt Lyapunov exponents and the related local "covariant" exponents change with the change of scale. Thus this model furnishes a clearcut chaotic time-reversible example showing how and why both the local Lyapunov exponents and covariant exponents vary with the scale factor s .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信