{"title":"动态光WDM网络中掺铥和掺铒光纤放大器的比较研究","authors":"M. Khamis, K. Ennser","doi":"10.1109/BICOP.2018.8658309","DOIUrl":null,"url":null,"abstract":"In this study, a two-level laser system model is presented to simulate the dynamic performance of the thulium-doped fiber amplifier around transmission window. We used the numerical methods to investigate the influences of channels drop in thulium-doped fiber amplifier performance and compare to that in an erbium-doped fiber amplifier at 1.55.μm region. Our findings revealed that the dynamic performance of a thulium-doped amplifier is smaller than for an erbium-doped fiber amplifier. The optical gain-clamping technique is proposed to reduce the effects of power transients in both optical amplifiers due to the channels drop in reconfigurable WDM system. We illustrate that the optical gain-clamped technique is more efficient when applied to thulium-doped fiber amplifier than erbium-doped fiber amplifier. As a result, the thulium-doped fiber amplifier shows greater stability with a larger broadband to enable high capacity WDM transmission.","PeriodicalId":145258,"journal":{"name":"2018 IEEE British and Irish Conference on Optics and Photonics (BICOP)","volume":"40 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative Studies of Thulium and Erbium-doped Fiber Amplifiers for Dynamic Optical WDM Networks\",\"authors\":\"M. Khamis, K. Ennser\",\"doi\":\"10.1109/BICOP.2018.8658309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a two-level laser system model is presented to simulate the dynamic performance of the thulium-doped fiber amplifier around transmission window. We used the numerical methods to investigate the influences of channels drop in thulium-doped fiber amplifier performance and compare to that in an erbium-doped fiber amplifier at 1.55.μm region. Our findings revealed that the dynamic performance of a thulium-doped amplifier is smaller than for an erbium-doped fiber amplifier. The optical gain-clamping technique is proposed to reduce the effects of power transients in both optical amplifiers due to the channels drop in reconfigurable WDM system. We illustrate that the optical gain-clamped technique is more efficient when applied to thulium-doped fiber amplifier than erbium-doped fiber amplifier. As a result, the thulium-doped fiber amplifier shows greater stability with a larger broadband to enable high capacity WDM transmission.\",\"PeriodicalId\":145258,\"journal\":{\"name\":\"2018 IEEE British and Irish Conference on Optics and Photonics (BICOP)\",\"volume\":\"40 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE British and Irish Conference on Optics and Photonics (BICOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICOP.2018.8658309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE British and Irish Conference on Optics and Photonics (BICOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICOP.2018.8658309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Studies of Thulium and Erbium-doped Fiber Amplifiers for Dynamic Optical WDM Networks
In this study, a two-level laser system model is presented to simulate the dynamic performance of the thulium-doped fiber amplifier around transmission window. We used the numerical methods to investigate the influences of channels drop in thulium-doped fiber amplifier performance and compare to that in an erbium-doped fiber amplifier at 1.55.μm region. Our findings revealed that the dynamic performance of a thulium-doped amplifier is smaller than for an erbium-doped fiber amplifier. The optical gain-clamping technique is proposed to reduce the effects of power transients in both optical amplifiers due to the channels drop in reconfigurable WDM system. We illustrate that the optical gain-clamped technique is more efficient when applied to thulium-doped fiber amplifier than erbium-doped fiber amplifier. As a result, the thulium-doped fiber amplifier shows greater stability with a larger broadband to enable high capacity WDM transmission.