基于多尺度低秩惩罚压缩感知的动态磁共振成像

Marie Mangova, P. Rajmic, R. Jiřík
{"title":"基于多尺度低秩惩罚压缩感知的动态磁共振成像","authors":"Marie Mangova, P. Rajmic, R. Jiřík","doi":"10.1109/TSP.2017.8076094","DOIUrl":null,"url":null,"abstract":"In multi-scale low rank decomposition model, the data are assumed to be a sum of block-wise low rank matrices with different scales of block sizes. In many practical applications, data itself is not represented directly, yet in some transformation domain, e.g. the data acquired in the Fourier domain in context of magnetic resonance imaging (MRI). In this paper, we present a natural extension of the multi-scale low rank model and propose its combination with a measurement operator. This modification is necessary for utilization of the model in compressed sensing perfusion MRI, where the compressed acquisition is crucial to achieve high spatial and temporal resolutions. We compare the proposed method with the recent “low-rank+ sparse” method of Otazo, Candes & Sodickson and we show that the proposed method brings improvement in the quality of reconstructed intensity curves.","PeriodicalId":256818,"journal":{"name":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic magnetic resonance imaging using compressed sensing with multi-scale low rank penalty\",\"authors\":\"Marie Mangova, P. Rajmic, R. Jiřík\",\"doi\":\"10.1109/TSP.2017.8076094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multi-scale low rank decomposition model, the data are assumed to be a sum of block-wise low rank matrices with different scales of block sizes. In many practical applications, data itself is not represented directly, yet in some transformation domain, e.g. the data acquired in the Fourier domain in context of magnetic resonance imaging (MRI). In this paper, we present a natural extension of the multi-scale low rank model and propose its combination with a measurement operator. This modification is necessary for utilization of the model in compressed sensing perfusion MRI, where the compressed acquisition is crucial to achieve high spatial and temporal resolutions. We compare the proposed method with the recent “low-rank+ sparse” method of Otazo, Candes & Sodickson and we show that the proposed method brings improvement in the quality of reconstructed intensity curves.\",\"PeriodicalId\":256818,\"journal\":{\"name\":\"2017 40th International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 40th International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2017.8076094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2017.8076094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多尺度低秩分解模型中,将数据假设为具有不同尺度块大小的逐块低秩矩阵的和。在许多实际应用中,数据本身并不直接表示,而是在某些变换域中表示,例如在磁共振成像(MRI)的傅里叶域中获取的数据。本文给出了多尺度低秩模型的一种自然扩展,并提出了与测量算子的组合。这种修改对于在压缩感知灌注MRI中使用该模型是必要的,压缩采集对于实现高空间和时间分辨率至关重要。我们将该方法与Otazo, Candes & Sodickson的“低秩+稀疏”方法进行了比较,结果表明该方法提高了重建强度曲线的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic magnetic resonance imaging using compressed sensing with multi-scale low rank penalty
In multi-scale low rank decomposition model, the data are assumed to be a sum of block-wise low rank matrices with different scales of block sizes. In many practical applications, data itself is not represented directly, yet in some transformation domain, e.g. the data acquired in the Fourier domain in context of magnetic resonance imaging (MRI). In this paper, we present a natural extension of the multi-scale low rank model and propose its combination with a measurement operator. This modification is necessary for utilization of the model in compressed sensing perfusion MRI, where the compressed acquisition is crucial to achieve high spatial and temporal resolutions. We compare the proposed method with the recent “low-rank+ sparse” method of Otazo, Candes & Sodickson and we show that the proposed method brings improvement in the quality of reconstructed intensity curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信